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so that a write operation from a concurrent transaction will
not interfere improperly with the read operation. However,
setting a lock or leaving a timestamp with a data element is
an expensive operation. The purpose of the current research
is to seek ways to reduce the overhead of synchronization of
certain types of read accesses, and at the same time achieving
the goal of serializability. k ..

To this end, a hierarchical structure is proposed here as
the means for analyzing opportunities of reducing concurrency
control overhead in a database application. A theorem is
proven which indicates that in a hierarchically decomposed
database one can construct yet a third type of partial order of
all transactions which is different from the simple commit
order and the simple initiation order that hve been used in
the existing algorithms. This new type of partial order,
called topologically follows, enables a new algorithm
for concurrency control to be devised which is belived to have
the potential of reducing the overhead of read access synchron-
ization in a database system.

The report develops the theory that supports the correctness
of such analysis and algorithms. An implementation scheme
for the proposed algorithm, the Hierarchical Timestamping
Algorithm, is described. The complexity of the hierarchical
database decomposition methodology is analyzed and a heuristics
procedure is proposed. The HDD approach is applied to three
difkerent application areas in which its effect on relieving
database contention and on structuring databases and trans-

- actions so as to reduce concurrency control overhead is
demonstrated.
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ABSTRACT

Increasing demand for information system capacity has prompted researchers
to find ways to improve the computer systems used in information processing.
Database management systems (DBmS's) represent one such effort to provide bet-
ter information services at lower costs. In order to minimize response time
and maximize throughput, it is desirable that a DBMS supports multiple users
at the same time, allowing multiple transactions to run in parallel. However,
for the purpose of maintaining database cao-stancy and integrity, such
parallelism must be properly controlled. For example, suppose two trans-
actions that transfer money into the same bank account are run in parallel.
Without proper coordination between the two transactions, it is possible that
both of them. would read the same old balance, modify it independently and
write these independently-modified balances back to the database. If this
happens, the final balance will reflect the result of only one, but not both,
of the transactions, causing one transaction to be lost. To prevent such vio-
lation of database consistency and integrity from taking place, the
concurrency control facility is an indispensable component of the database
management system.

A generally accepted criterion for correctness of a concurrency control
D algorithm is the criterion of 4e 0LUzabi4L of transactions. The classical

approaches to enforcing serializability are the .tAo-ph oM tocki.tg technique
and the Vfte4tAmp ohdxAinq technique. The first technique ensures
serializaility by imposing a partial order on all transactions based on their
commit order, while the second on their initiation order. Either approach
requires that a read operation from a transaction be A4e594&Ad (in the form
of either a read timestamp or a read lock), so that a write operation from a
concurrent transaction will not interfere improperly with the read operation.
However, setting a lock or leaving a timestamp with a data element is an
expensive operation. The purpose of the current research is to seek ways to
reduce the overhead of synchronizing certain types of read accesses, and at
the same time achieving the goal of serializability.

To this end, a hierarchical structure is proposed here as the means for
analyzing opportunities of reducing concurrency overhead in a database appli-
cation. A theorem is discovered which indicates that in a hierarhically
decomposed database one can construct yet a third type of partial order of all

-2-



4 transactions which is different from the simple commit order and the simple
initiation order that have been Used in the existing algorithms. This newj type -of partil order, called tOpOtogicatt jOttot, enables a new algorithm

[ for concurrency control to be devised which is believed to have the ability of

system that endorses a hierarchical decomposition of the database.

IiThe thesis develops the theory that supports the correctness of such analy-

sis and algorithms. An implementation scheme for the proposed algorithm, the
Hierarchical Timestamping Algorithm, is described. The complexity of the
hierarchical database decomposition methodology is analyzed and a heuristics
procedure is proposed. The HDD approch is applied to three different applica-
tion areas in which its effect on relieving database contention and on
structuring databases and transactions so as to reduce concurrency control
overhead is demonstrated.

Thesis Supervisor: Prof. Stuart E. Madnick
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1.0 INTRODUCTION AND THE SCOPE OF THE THESIS

1.1 INTRODUCTION TO THE CONCURRENCY CONTROL PROBLEM

Increasing demand for Information system capacity has prompted

researchers to find ways to improve the computer systems used in infor-

mation processing. Database management systems (DBMS's) represent one

such effort to provide better information services at lower costs. In

order to minimize response time and maximize throughput, it is desirable

that a DBMS supports multiple users at the same time, allowing multiple

* transactitons to rim in parallel. flowever, for the purpose of maintain-

ing database consistency and integrity, such parallelism must be

properly controlled. Therefore the concurrency control facility isan

indispensable component of the database management system.

The role of a concurrency control mechanism is to preserve the

atomicity of a user transaction, i.e., it will prevent the processing of

a transaction from being eAioneou~q intW. aved with other concurrenct

transactions, so that each transaction sees a consistent database state

and, if necessary, can be recovered or backed out as a single unit.

A typical example of database inconsistency induced by improper

interleaving of steps of concurrenct transactions is shown in Figure 1.

-10-
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Currently there is $100 in Smith's Account.

tl: Deposit $50 into Smith's account

t2: Withdraw $50 from Smith's account.

Smith's Biance
in database

1. tlI reads Smith's
balance ___

2. t2 reads Smith's

balance

3. t! computes Smith's
new balancP$

4. t2 computes Smith's
new balance

6. t2 writes Smith's

new balance_

Figure 2.. An example of .database inconsistency induced by

concurrent processing.

-11-
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As shown in the figure, two transactions simultaneously accessing the

same piece of data may result in lost update, leaving the database in an

incorrect state. This is due to the fact that the database access steps

from these two transactions are not properly interleaved. By requiring

that the database management system exercise control over such inter-

leaving of concurrent transactions, the undesirable effects can be

eliminated.

1.2 THE SCOPE OF CURRENT RESEARCH

1.2.1 INTRODUCTION

A generally accepted criterion for correctness of a concurrency con-

trol algorithm is the criterion of serializability of transactions,

which means that interleaving is harmless so long as one can show that

the net effect of such interleaving is equivatW to AM svi.aiZ"e"

pAoceLAhn9 (i.e., one after another) of all the transactions involved.

In the above example, it is apparent that the steps of the two trans-

actions are scheduled in such a way that there exists no serialized

schedule (i.e., either t1 after t2 or t2 after t1 ) that would have gen-

erated the same net effect. Therefore the schedule of these steps is

not serializable, and therefore incorrect.

-12-
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The classical approach to enforcing serializability is the two-p he

tocingt technique. This technique locks up data elements being accessed

by one transaction and blocks other transactions from operating on these

data elements until the first transaction is finished. Another approach

to dealing with this problem is that of the tmit£tA p OAdCeJig

techntique, Which stamps the data elements with the timestamps of the

transactions that have operated on them so as to prevent violation of a

pre-determined order from taking place.

Either approach requires that a read operation from a transaction be

eg9Zi6teued (in the form of either a read timestamp or a read lock), so

that a write operation from a concurrent transaction will not interfere

improperly with the read operation. Setting a lock or leaving a

timestamp with a data element is an expensive operation. It not only

incurs a write operation in the database (in the form of setting the

read lock or writing the timestamp), but also potentially causes delays .

for concurrent transactions that might be avoided.

The purpose of the current research is to seek ways to reduce the

overhead of synchronizing certain types of read accesses, and at the

same time achieving the goal of serializability. A more formal and com-

prehensive overview will be given in the next chapter of the literature

in concurrency control, including efforts up to now that have aimed at

similar goals. Here we intuitively motivate this research further

through a brief discussion of some empirical observations of the impact

-13-
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of concurrency control on performance of database systems and an example -

- . that illustrates the scope of this thesis research.

1.2.2 CONCURRENCY CONTROL AS A POTENTIAL BOTTLENECK OF DBXS'S

It was previously pointed out that setting locks and leaving

timestamps are potentially expensive operations. We now present a more

specific discussion on how the concurrency control activities could be a

threat to performance. We will approach this issue from two different

perspectives. The first is the impact of the processing overhead of the

concurrency control activities on the effective level of

multiprocessing. The second is their impact on the level of transaction

concurrency achievable and on overall performance. -

*1.2.2.1 PROCESSING OVERHEAD OF CONCURRENCY CONTROL

In <Gray78' it was reported that, in System R, the lock manager com-

prises 3 percent of the code and consumes about 10 percent of the

instruction execution time. The latter obviously would vary a great

deal depending on applications. A lock-unlock pair typically costs 350

instructions. No comparable statistics on timestamping algorithm have

been reported, but it is believed that the overhead of timestamping

would not be significantly different from.that of locking, since both

activities basically involve table manipulation and updates.

-14-
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Taking these numbers as reference, this type of processing overhead

of concurrency control in general would not amount to unacceptable load

i on the computer system. However, this overhead does tend to grow as the

required throughput of transactions and transaction sizes increase,

since both of these increases would cause lock tables, etc., to grow in

size and complexity, making each visit to these tables more

time-consuming. In addition, as pointed out in <FriedmanSO>, practical

experiences with DBMS's such as IBM's INS show that performance of the

system tables (e.g., lock tables) associated with the concurrency con-

trol facility (or the 'program isolation facility' in INS's terms) has .

important bearings on the overall performance of the DBMS and should be

taken into consideration when designing transactions, especially trans-

actions that involve many granute accesses and updates. For example,

existence of long transactions, if not carefully handled, often severely

degrades performance of unrelated short transactions through interfer-

ence of the concurrency control facility itself.

However, a potentially more serious problem of concurrency control

overhead is the fact that concurrency control has to be performed in a

critical section in which no other processes can interrupt. This means

that if a transaction is currently manipulating a lock table, no other

transactions will be allowed to perform locking and unlocking involving

the same lock table until the former is finished. It is this contention

for the right to enter a critical section for concurrency control pur- I
poses that may prove to be a serious limitation in buildinq a

-15-
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multi-processor system with a high degree of multiprocessing. For exam-

ple, if concurrency control consumes about 10 percent of the instruction

* .- execution time in a particular critical section per transaction, then

the maximum number of effective processors a multiprocessor transaction

- processing system may have is 10. While this is not a problem when the

" .degree of multiprocessing required is low, it is certainly an issue in

designing large multiprocessor database computers such as the one to be

described in Section 9.3. Reducing visit frequencies to these critical

sections, which means reducing frequencies of setting locks or

timestamping, would have a significant impact on designing multiprocess-

or database computers.

1.2.2.2 IMPACT OF LEVEL OF CONCURRE9C ON DENS PERFORMANCE: TWO EMPIR-

ICAL CASES

In addition to the processing overhead and critical section limita-

tions, a concurrency control method that results in high volume of

transaction blocking and therefore limits the level of concurrency

achievable in the system will inevitably cause computing resources to be

under-utilized while throughput and response times of the system suffer.

In this section, we provide a synopsis of two cases where the level of

concurrency in the systems has proven to be the limiting factor of per-

formance of the systems. We will first clarify the notion of level of

concurrency through a simple example.

-16-
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Consider the following interleaved schedule of read and write steps

from three transactions to, ti, and t2:

Wo(b) RI(a) R2 (b) W1 (b) W2 (c)

where R1 (a) refers to a request from transaction t1 to read data element

a, and WI(b) to write data element b, and so on. Suppose the basic

timestamping algorithm is used and that the timestamp of t1 is smaller

than that of t2. Then t1 will be denied right to write data element b

(since at that time b is stamped with a t2 read timestamp which is

greater than that of ti's), and•forced to abort. On the other hand, if

this interleaved sequence of access requests is received by a two phase

locking facility, t1's request to put a write lock on b would have to be

blocked till t2 finishes and releases its read lock on b. However, an

examination of the schedule reveals the fact that the schedule is

serializable and is equivalent to a serialized schedule in which t1 is

executed after t 2 . Since the timestamp algorithm is designed to syn-

chronize concurrent transactions by timestamp order, any serializable

schedule that violates the timestamp order is ruled out. Similar argu-

ments prevail for the locking protocol.
.I.

Blocking or aborting transactions cause the level of concurrency

attainable in the system to suffer, which in turn degrades system per-

formance. As shown in the above example, not all interferences from a

concurrency control algorithm through blocking or aborting are

necessary. Therefore, in <Papadimitriou82', optimality of a concurrency

control algorithm is defined as the degree to which the algorithm allows

-17-
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for 'serializable input schedules' to proceed without being interrupted.

Due to issues of impleentability, no known concurrency control methods

would allow all serializable schedules to proceed without interference.

However, optimization of currently available methods through transaction

analysis, such as in the case of the hierarchical database decomposition

approach reported in this thesis, can increase the level of concurrency

of a DBMS.

Now we use two cases to i.l.ustrate the effect of the level of concur-

rency on system performance.

1.2.2.3 BENCNMKRKING A DATABASE APPLICATION

This case was reported by the BDM Corporation <BDX2,. In 1982, the

BDM corporation, a general consulting firm based in Washington D.C., was

contracted to develop a document control system for the Department of

Defense, called The Technical Information Management Library and Docu-

ment Control System. The system was developed on the ORACLE Database

Management System, version 2, a commercially availble DBMS released in

1981. The design of the ORACLE DBMS received much influence from System

R, an experimental relational database management System developed at

IBM Research Lab.

Two observations were made by the BDM development team after perform-

ing benchmark testing for the document control system:

-18-•".',
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(1) In the first set of benchmark tests, two sets of transactions

were run against the system. The first set consists of only

read-only transactions, and were run without any interference

from the concurrency control facility. The second set of trans-

actions are similar in nature to the first except that they are

update transactions and therefore requires 3 times as many I/O

as the set of read-only transactions. The result of the
6

benchmark is that running the first set of transactions attained

a throughput 10 times as much as that of the second set. It was

determined that the portion of the discrepency in performance

not explainable by the differences in I/O requirements is to be

attributed to the concurrency control activity which has appar-

ently limited the level- of concurrency attainable by the

computer system and severely degraded system throughput. Assum-

ing that each transaction in the second set requires 3 times as

much CPU and I/O as that of the first set and therefore can be

considered as equivalent to 3 transactions in the first set, one

draws the conclusion that for this particular application and

set of transactions, turnig off interference from the concurren-

cy control facility may result in a 330 percent increase in

throughput. Conversely, concurrency control is responsible for a

75 percent degradation in throughput.

(2) The above, benchmark tests do not involve conversational trans-

actions. A conversational transaction is a transaction that.--

involves operator think time. For example, if a user inputs

-19-



'Begin Transaction' and requests Certain processing be done,

then waits f or a certain amount of time ('think time') to elapse

before inputting the rest of the processing request for that

I transaction before issuing the 'End Transaction' instruction,

this user is executing a conversational transaction. The second

set of benchmark tests performed by 3DM is a comparison between

*performance Of conversational update transactions and

non-conversational update transactions. At the development

site, a benchmark of a certain type of update transactions was

p performed and was reported to have attained a throughput rate of

10 transactions per minute. This test case did not take opera-

tor think time into Consideration. However, when the system was

j installed at the user sit* and was tested with the same type of

update transactions with operator think time involved in the

execution of these transactions, the throughput suffered dramat-

ically and dropped to 1 transaction per minute, with a response

time of 3 minutes per transaction. A diagnosis of the cause of

this degradation indicated that interference from the concurren-

cy control facility made it Impractical for the system to run

more than 3 transactions at a time, severely limiting the use of

the potential capacity of the system.

* 1.2.2.4 PREDICTING PERFORMANCE OF A HIGH-THROUGHPUT DBMS APPLICATION

-20-



This case was reported by BGS Systems, a consulting firm based in

Massachusetts that specializes in computer system performance

evaluation. BGS was requested in 1982 to conduct a study using analyt-

ical modeling tools to predict the performance of a high-throughput

(approx. 11 transactions per second at peak load) database application

implemented on IBM's IMS system, for a client who wishes to remain anon-

ymous. This synopsis of the result of this study is based on a report

furnished to the author by BGS Systems <BGS>.

The study began with an analysis that quantified the effect of compe-

tition between different INS processing regions (i.e., transactions) for

certain highly-used database records. In particular, it documented the

fact tiat, even through the computer system can theoretically allow a

much larger number of transactions to reside in the system, the effec-

tive level of multiprogramming attainable by the current application

system is about 3, beyond which blocking due to concurrency control

would eliminate the benefit of a higher multiprogramming level. This

observation is captured in the following two figures extracted from the

report.

In Figure 2, predicted system response times in minutes are plotted

against throughput load of the system, if no concurrency control inter-

ference existed. It can be seen that the response time increases very

slowly as throughput load increases, signifying that the computer system

resources such as CPU and I/O devices are not heavily utilized. In con-
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trait, Figure 3 presents. the result of the system performance after-

introducing concurrecy control blocking effect into the current applica-

-tion. The A-curve represents the response time of the same set of

transactions on the same computer system as shown In the previous

figure. However, the interference of the blocking effect from the con-

currency control facility of the DBMS produced a steep response time

curve this time, and, since an average response time in excess of 2 min-

utes are considered unacceptable by the client, the graph clearly states

* that the current system can not perform satisfactorily. Curves B

through F documents predicted performance under various Improvements

done to the computer system, Including such measures as introducing

faster disks and better arrangement of data on the 1/0 devices.

However, it Was Concluded that, while with these tunings the current

system might produce adequate results, it probably would not be able to

handle further increases in load that are expected to take place. The

Study recommended a redesign of the application system to better handle

* the concurrency control issue.

1.2.2.5 SUMMY

The above two cases are included in this chapter to provide empirical

evidences that the concept of system limitation due to database concur-

rency control is an important one and is expected to gain attention as

databases are more widely installed and loads on these systems increase.

-24-
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1.2.3 AN EXAMPLE ILLUSTRATING THE SCOPE OF CURRENT RESEARCH

Consider an inventory database application of a retail business with

a database shown in Figure 4. There are several types of transactions

that operate on this database. A type I transaction inserts a sales

record into the database when the event of a sales occurs. A type 2

transaction inserts a stock-arrival record into the database when the

event of a stock arrival occurs. A type 3 transaction is generated

periodically for each item in the inventory to compute the current

inventory level of that item. This transaction visits the sales and

stock-arrival records to compute the net change ever since the last com-

putation of the inventory level of that item. A new inventory level for

that item is then posted in the inventory record.

To control these transactions using two-phase locking, a type 3

transaction would have set read locks on every read access it has gener-

ated to the sales and stock-arrival records, including records serving

as access paths such as index records. Using the timestamp ordering

approch, the type 3 transaction would have left read timestamp for every

such record it has read. What we are interested in here is whether

there is a concurrency control method that would eliminate the need for

leaving read timestamps (or setting read locks) when a type 3 trans-

action accesses the sales and the stock-arrival records. An analysis

shows that, because those transactions that update the sales and the

stock-arrival records do not access the portion of the database a type 3

-25-
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[ transaction would update, the above objective can be achieved as

follows: if one could produce a snapshot of the sales and the

stock-arrival records for a type 3 transaction, say, t, when t is initi-

ated, and have t operate on the snapshot rather than the original

records, then, without compromising serializability, t would not have to

set read locks or leave read timestamps on these records. This means
that concurrent updaters of these records (i.e., type I and type 2

transactions) can proceed without being interfered by t.

Let us introduce yet another type of transactions. Suppose there are

type 4 transactions which are also generated periodically to check for

the need of reordering certain stock items. This type of transaction

reads t e stock-arrival records and adjust the st=k-on-order records

(by setting the arrival-date field of such records.) It then computes a

gross inventory level by summing the current-inventory-level and the

quantities indicated by the non-arrived stock-on-order records. Based

on this gross inventory level a decision is made as to whether to reor-

der this item. If it decides to do so, an order request is printed and

a stock-on-order record is generated and inserted.

It is noted that a type 4 transaction reads, but does not update, the

stock-arrival and the inventory records. Therefore it is desirable if

one can generalize the above observation on the type 3 transaction to

" apply to the type 4 transactions such that the read accesses to the

stock-arrival and inventory records by a type 4 transaction can proceed

-27-
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without inducing interference with the other three types of

transactions.

This example depicts a database system whose applications are struc-

tured in a special way as shown in Figure 5. In the figure it is shown

that a transaction type can be paired with a particular portion of the

database it updates and has read accesses (dotted arrows) to other

portions of the database. In fact, the above case can be generalized

further by, for example, adding to it transaction types that read from

the reordering records and the stock-arrival records to generate suppli-

er profile records in the database. As the list goes on, a hierarchy of

transaction types is formed such that at each level of the hierarchy the

transaction only reads from, but does not, or rarely, write into data

written by transaction types of an earlier level. This structure pre-

sents a definite opportunity for concurrency control algorithms to

explore.

1.2.4 RESEARCH GOALS AND ACCOXPLISHMENTS

Most concurrency control algorithms, for simplicity, choose to ignore

the above opprotunity for reducing synchronization overhead, and com-

plies strictly with the assumption that all transactions may read and

write any part of the database and therefore every access has to be con-

trolled. The goal of the current research is to demonstrate that a Ay-

tematic exptoitation of the read-wrtte pattern of transactions can be

-29-
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effectively used to achieve the objective of reducing concurrency con-

trol overhead.

In this thesis, we will demonstrate the potential benefit of incorpo- J
rating into a concurrency control algorithm the knowledge of special

structures of the applications. Sepcifically, we accomplish the follow-

ing tasks:

(1) Formalize the concept of 'hierarchically organized database

applications' and identify types and properties of such organ-

izations.

(2) Develop a timestaup-based concurrency control algorithm, called

the Hierarchical Timestamp Algorithm (HTS), that is capable of

taking advantages of the existence of such organizations in

database systems. Specifically, we achieve the goal of allowing

certain read acesses requested by update transactions to proceed

without ever having to set read timestamps or having to create

the danger of causing other concurrent transactions to abort.

In other words, the algorithm allows certain update transactions

to proceed in a way that does not interfere at all with certain

other concurrent update transactions. In addition, a protocol

for synchronizing the read-only transactions in a hierarchically

organized database system is also developed which allows the

read-only transaction to proceed in a way that does not inter-

- fore at all with any concurrent update transaction.

-30-
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The algorithm, consisting of a total of three types of proto-

cols for synchronizing different types of accesses from update

transactions, can be considered as a generalized tizestamp algo-

rithm parameterized by a hierarchical structure of the applica-

tions. This algorithm degenerates to a conventional timestamp

algorithm (therefore consisting of only one relevant protocol)

when such a hierarchical structure is not recognized.

(3) Propose an implementation scheme for the hierarchical

timestamping algorithm which demonstrates the benefit of the

above algorithm in concrete terms. In designing the implementa-

tion, a methodology is also developed for analyzing and laying

out system modules and shared data structures where concurrency -

is of concern. This methodology is believed to have bearings on _

concurrent system design in general.

(4) Formulate as an optimization problem the task of recognizing a

favorable hierarchical structure given a database application

system. The problem, unfortunately, is proven to be NP-hard,

and a heuristic algorithm is proposed for solving it.

(5) Apply the concept of the hierarchical database organization

approach to concurrency control to three different problem areas

and demonstrate the efficacy of incorporating this concept into

solving the concurrency control problems in database management

systems.

-31-
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It is important to stress that the thrust of the thesis research is

more than proposing a new concurrency control algorithm. It demonstrates

the potential benefit of exploiting the knowledge and the structure of

the application systems to implement more efficient and more tailored

concurrency control mechanism. It also points out an area of research

that has not been fully examined, namely, how to de4 gn tOJ4=tio.0 .o

Id tht concwv.ency contiwe tu.6 w~ be 4Jimpti6ied "~hout comp' oa.iatgq

the m geJxial tequiAement4 on the data. It is believed that trans-

action design with the concurrency control problems in mind could

produce a structure of applications that is easier and less costly for

concurrency control to be implemented.

1.3 THE STRUCTURE OF THE THESIS

The thesis is composed of a total of ten chapters. In the first

chapter, the problem of database concurrency control is introduced and

the motivation and the scope of the thesis research is discussed. It

also summarizes the goals and the accomplishments of this thesis

research.

In Chapter two, a literature overview is presented to bring out rele-

vant recent research developments in the database concurrency control

area. It provides a perspective as to how this thesis research is

related to recent trends in concurrency control research. This chapter
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also contains a review of important formalisms involved in the concur-

rency control problem so as to provide the background for understanding

the proofs to be presented in the subsequent chapters.

In Chapter three, the concept of the hierarchical organization of

database applications is formalized. It classifies the taskcs of algo-

rithm development in such organizations into three: protocols for con-

trolling update transactions under non-cyclic database partition,

protocols for controlling update transactions under cyclic database par- 2

tition, and protocol for controlling read-only transactions where udpate - .

transactions obey the above protocols. These three tasks are separately

described in Chapters four to six. In each of these chapters, the basic

definitions and the protocols -are first described with illustrating

examples. The proofs of correctness then follow. These protocols col-

lectively form the hierarchical timestamp concurrency control algorithm.

In Chapter seven, a scheme is proposed for implementing the hierar-

chical timestamp protocols developed in the previous chapters. This

scheme addresses the problems of timestamp computation and mangement,

multi-version database implementation and the problem of garbage col-

lection.

In Chapter eight, we examine the problem of how to identify a favora-

ble hierarchical database organization that can be used by the hierar-
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chical timestamp algorithm. The complexity of this problem is analyzed

and a heuristic algorithm for solving it is proposed.

In Chapter nine, we discuss the efficacy issue of the hierarchical

timestamp approach to database concurrency control. Three problem areas

(the B-tree access method, a banking application and a database computer

application) are explored. -

Finally, in Chapter ten, we summarize the thesis and discuss future

research directions.
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2.0 LITERATURE REVIEW

This chapter is Composed of two parts. The first section is an over-

view of the recent works and trends in concurrency control research to

provide a perspective as to how the work reported in this thesis is

related to other works in the field. The second section reviews basic -
concepts and formalisms in the concurency control theorey to provide a

background for the theoretic developement to follow in the subsequent

chapters.

2.10 VERVIEW OF RELEVANT RECENT RESEARCH IN DATABASE CONCURRENCY CON-

TROL

Concurrency control in a centralized or a distributed database system

has been an active research area. The concept of database convistency

has been formally analyzed in <Eswaran76, Gray76>, in which

set-theoretic notions are used to formulate the concept. A consistent

schedule of concurrent transactions has been defined to be one which is

equivalent to a serialized schedule. Two-phase locking has been pro-

posed in their papers as a mechanism which preserves serializability.

This notion of serializability has been further explored in

. ..-. -

Concurrency conan ol in a cntralzd ra itiutd aabs yse --
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2.1.1 ALGORITHMS, METHODS AND OTHER ISSUES

Algorithms for database concurrency control abound in the literature.

The distributed database present a challenge for the consistency problem

which has encouraged development of many new algorithms. <For example,

Ellis77, Lamport78, Rosenkrantz78, Thomas79, Bernstein8l.> A survey and

comparison of theories and algorithms of concurrency control can be

found in <Bernstein8l>.

Most algorithms are considered variations, extensions and/or combina-

tions of the two basic techniques for concurrency control - two-phase

locking and time stamp ordering. The two-phase locking algorithm

ensures consistency by ;.mposing a partial order on all transactions

based on their lock points. (A lock point of a transaction is the point

in time when the locking phase of the transaction reaches its peak.)

The timestamp ordering algorithm, on the other hand, ensures consistency

by imposing a partial order on all transactions based on the initiation

times of the transactions. The latter is sometimes referred to as the

optimistic concurrency control method 'Ullman82> because it allows

transactions to proceed without locking the data elements in hope that

conflicts would not occur. It, however, timestamps the data elements

with the timestamp assigned to the transaction (i.e., usualy the initi-

ation time of the transaction) that accesses the data elements in order

to detect conflicts when they do occur and resolve them through trans-
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action aborts. These two techniques, two-phase locking and timestamp

ordering, have been used as the basis for further explorations.

Another optimistic alternative to two-phase locking for concurrency

control is the validation method <Kung8l, Ceri82>. Like the timestamp

algorithm, the validation method allows the transaction to proceed rela-

tively freely without setting locks on data elements accessed. Unlike

the timestamping method, however, the algorithm does nothing (i.e., not

even timestamp data elements) during the execution of the transactions.

Instead, at the end of the transaction execution, the transaction enters

a 'validation phase' during which the set of the data elements the

transaction has accessed is intersected with the access sets of all oth-

er concurrently committed transactions. The transaction is validated if

the intersection is empty, and is aborted if it is not. Obviously, this

method rests on the assumption that conflicts rarely occurs, and there-

fore virtually all transactions would pass the validation phase. Other

variations of the validation method have also been discussed

<Bernstein82b>.

Other issues concerning concurrency control algoirthms in general are

the data granularity and crash recovery. In <Gray75>, <Korth82> and

<Carey83> the issues involved in granularity hierarchies are discussed,

while in <Ries77> and <Ries79> the effect of the choice of data granules

on the performance of the concurrency control algorithms is addressed.

In <Gray78>, the two-phase commit policy is discussed which addresses
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the issue of handling a system crash during a transaction's write phase.

In order not to have the effects of such such transactions cascade in an

undesirable fashion, the two-phase commit policy is used to effect

'atomic commit', which stipulates that in-place database updates should

not take place until a transaction has forced all its upates to a

secured log.

2.1.2 MULTI-VERSION METHODS

One recent development in concurrency control algorithms centers

around the identification of techniques that increase the level of con-

currency and/or reduce synchronization overhead, at the same time pre-

serving the correctness of the algorithm. One approach is the use of a

multi-version database. It's been observed that keeping multiple ver-

sions of database elements will improve concurrency of the database

pc~apadimitriou82>. In Papadimitriou's paper, it is shown that there

exists an infinite hierarchy of multi-version serializability, and prov-

en that the more versions a DBMS keeps, the higher is the level of

concurrency it may achieve.

The concept of a timestamp-based multi-version database system was

first proposed in <Reed78>. It is a general scheme in which the identi-

fier of a data element consists of two components: the name of the data

and the version of the data. In Reed's scheme, retrieval of an arbi-

trary time slice of the database is allowed.
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A more limited multi-version concept was developed in <BayerSO>. In

his scheme, one previous version of a data element, which has been saved

for recovery purposes when the data element is going through changes

made by uncommitted transactions, is utilized to allow read accesses to

proceed without having to wait for the commitment of the update trans-

action. However, read locks still have to be set by the read requests

and there is the additional overhead of explicitly maintaining a trans-

action dependency graph. An extension of this method to a distributed

database is proposed in <Bayer8Ob>. In cViemont82>, an interesting

method for concurrency control is devised which also makes use of this

one extra copy of data elements to synchronize transactions by order of

commit time. In essance his technique is one which blends timestamp

ordering and two-phase locking in one and chooses to switch to one or

the other at the most opportune time so as to increase the level of con-

currency. In <Stearns8l, Chan82> the one-previous-version method was

extended to accommodate multiple previous versions (but does not allow

for access of an arbitrary time slice of the database from a user.)

Stearns' method extends the method propsoed in <Bayer8O> to exploit the

benefit of the existence of multiple previous versions. Read locks,

however, are still needed for all transactions. Chan's method is also

based on two-phase locking but allows the read-only transaction to

receive special treatment - they do not have to set read locks. Extend-

ing this method to a distributed database is presented in <Chan82b>. In

<DuBourdieu82> a method similar to Chan's is also discussed. In
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<Garcia-Molina822, a framework of strategies for processing read-only

transactions is presented.

The above list of research bears resemblance to the research to be

reported here. However, our technique is one which is timestamp based

and strives to reduce the need for leaving read timestamps for not just

read-only transactions, but update transactions as well.

2.1.3 EXPLOITING KNOWLEDGE OF TRANSACTIONS

Another approach to reducing synchronization overhead is to use the

- method of transaction analysis to obtain a priori the knowledge of the

nature of the transactions to be-Tun in the system. Two notable exam- .

ples are the conflict analysis <BernsteinSO8b and the hierarchical lock-

ing protocol oSilberschatzOO, Kedem8O.

In the research on concurrency control for SDD-i, conflict analysis

was proposed which exploits a priori knowledge of the nature of the

transactions to be run in the system. (To some extent, some of the

research listed in the previous paragraphs concerning providing special

protocols for read-only transactions falls into this category too, as it

exploits the knowledge, albeit a limited one, of the nature of the

transactions, namely, whether they are read-only or not.) The basic

idea behind the SDD-l approach is 'synchronizing only when necessary'.

It synchronizes a transaction in one class with only those transactions
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in classes that are in conflict with that transaction. If only two

transactions are run concurrently and they belong to classes that, via

transaction analysis performed before run time, do not conflict, then

there is no need to incur control overhead. However, if two trans-

actions are in conflict, then timestamps plus intra-class serialized

pipelining are used to ensure consistency.

The approach reported in the present paper is different from that of

SDD-1 because it is not oriented towards distributed database systems,

and, because of the special structure of applications that our approach

exploits, together with the fact that the multiple version techniquo is

employed, therth the amuch less restricted. These new protocols

are therefore more practical to implement.

The hierarchical locking protocol, sometimes referred to as the tree

protocol, also exploits special knowledge of the nature of the trans-

actions. Specifically, it assumes a priori knowedge that the sequence

of- accesses to the data elements exhibits a tree pattern. For example,

let data elements x and y in the database be accessed by a transaction

only if the transaction has previously accessed another data element z,

then one may consider z as the 'parent' of x and y and the access path

that a transaction follows is always from the parent data elements to

the child data elements. In general, if all data elements in the data-

" base can be structured as a tree and the access path to these elements

followed by transactions are always congruent to the tree structure,
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then a non-two-phase locking protocol can be used to synchronize the

accesses. The tree protocol is correct, but it is not two-phase and is

capable of allowing a higher level of concurrency than the two-phase

locking algorithm. Generalizing the tree protocol to DAG (directed

acyclic graph) has also been attempted. This concept of exploiting

structural knowledge of the database applications to identify better

concurrency control methods is further discussed in <Kung79', where the ...

notion of 'optimality of concurrency control algorithm' is explored.

While the research reported in this thesis also uses acyclic graphs

as tools for analyzing transactions and organizing groups of data ele-

ments (hence the term 'Hierarchical Timestamp Algorithm'), it bears lit-

tle relationship with the hierarchical locking protocol developed by -

Kedem and Silberschatz. The hierarchical locking protocol is concerned

with the knowledge of the natural SOqUenCe of the data requests from the

transactions (e.g., first z, then x and y), and attemps to achieve early

releases of locked elements by exploiting this knowledge. The HTS algo-

ritm is not concerned about the sequence of accesses but the modes of

accesses from groups of similar transactions (e.g., always read z but

never write z), and exploits this knowledge to achieve the effect of not

having to leave traces for reading data elements. Therefore these two

approaches, while sharing the philosophy of 'knowledge exploitation' and

the tool of acyclic graphs, are very different in substance.
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In the following section, we will review the basic formalisms in

database concurrency control and pave the way for formally developing

the hierarchical timestamp algorithm in the subsequent chapters. .-

2.2 BASIC CONCEPTS OF MULTI-VERSION CONSISTENCY

In this section, we review the basic concepts and formalisms in data-

base concurrency control. The concurrency control theory centers around

the notion of 'correctness' of schedules. A schedule is a sequence of

steps such as read, write or read-and-write of data elements in the

database. An input schedule is a sequence of steps representing

requests for actions on data elements submitted to the concurrency con-

trol (CC) facility by the transactions. An output schedule is a sequence

of steps allowed by the concurrency control facility, which is basically

a permutation of the input schedule. The purpose of the CC facility is

to take an arbitrarily interleaved input schedule and produce an output

schedule containing the same steps but in a sequence that is COPPeCt.

2.2.1 TRANSACTION PROCESSING MODELS

To prove that a concurrency control algorithm is correct, it is nec-

essary that a precise definition of correct schedules be given. As dis-

cussed before, serializability is a common criterion, and is defined as

follows:
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Definition. A schedule S is seiPlizihle if there exists an equiv-

alent schedule Ss where all transactions in Ss are serialized. (i.e., no

steps of one transaction are interleaved with steps from another trans- -. ,

action.) .

Now we must give the precise meaning of 'schedule equivalence'.

Intuitively, two schedules of a set of transactions are equivalent if

their 'effects' on the database are equivalent. Since it is only real-

istic to assume that the CC facility is blind to the intent of a trans-

action's use of a data element, the common notions of equivalence can

only be based on the assumption that every data element retrieved by a

transaction would have an impact on data elements later written by the

transaction, and every write changes the value of the data element.

However, the above concensus does not eliminate the existence of the

different ways in which the meaning of a 'step' in a schedule is inter- -.

preted. As a result, there are various tPansaction pPocessing models

each with its own notion of a 'step' in a schedule. The simplest model

is the action model in which it is assumed that every step in a schedule

is both a read and a write of the requested data element <Stearns76>. A

more general model differentiates a read-only step from a read-write

step, and is sometimes called a conflict model <Bernstein79 > . The most

general model is the read-only/write-only model, which does away with

the assumption implied in the conflict model that a write must entail a

previous read. <Papadimitriou79>. The notion of schedule equivalence -
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therefore must depend on the underlying assumption about what each step

in a schedule means.

In addition to the differences due to transaction processing models,

schedule equivalence also depends on whether it is meant to be

'final-state equivalence' <Papadimitriou79> or 'view equivalence'

<Rosenkrantz82>. The former stipulates that two schedules are equiv-

alent if the final database states are equivalent. Under this assump-

tion, those transactions that do not generate any effect in the final

database state (e.g., read-only transactions) can be considered redun-

dant, or 'dead', and would not in any way affect the decision as to

whether the schedule is serializable. The latter is concerned with

whether every transaction sees the- same database state in the two sched-i -'.

ules rather than whether the final database state is the same.

The differences in defining schedule equivalence results in different

technical definitions for serializability, which in turn results in dif-

ferent algorithms for testing for serializability. For example, testing

serializability of a schedule under the action model amounts to detect-

ing cycles in a simple directed graph, for which a polynomial time algo- 7.1

rithm exists, while testing that under the read-only/write-only model

amounts to detecting cycles in a polygraph, which is NP-complete.

In sum, to prove that a concurrency control mechanism is corret, one

must state the assumptions underlying the transaction processing model
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and the precise meanning of schedule equivalence. With this bacliground,

we now present the basic concepts in multi-version serializability.

2.2.2 MULTI-VERSION SERIALIZABILITY

Two definitions for mutli-version serializability have recently been

proposed. Both definitions are based on the most general transaction

processing model, namely, the read-only/write-only model, but differ in

the definitions of the read steps in a schedule. The difference lies

with whether the version number of the data element of a read step is

specified.

In <Bernstein82', a multi-version (mv) schedule is composed of read

steps in the form of rj(d i) and write steps in the form of w1(d
1 ), where

rj(d') is interpreted as 'transaction j reads the version i of data ele-

ment d' and w1 (d
i) is interpreted as 'transaction i creates the version

i of data element d.' Any feasible my schedule is subject to the con-

straint that if rj(d') is in the schedule, then wj(di) must be before rj

(d') in the schedule. This constraint merely says that a version cannot

be read until it has been created. Under this definition, the version -.

that a read step is reading is determined in the schedule. To test for

serializability of a mv schedule defined in this way, one must find out

if there exists a version order, such that, given this version order

denoted as <<, the graph defined below is acyclic: (There are notational

-46-

.. * . o.. . . .- ..4 . - - . . ..- ~- .. ..



".j

differences in the definition given here and that given in

<Bernstein82>)

Defifition. A transaction dependency graph of a mv schedule S and aI1
version order <<, denoted as TG(S,<<), is a digraph where the nodes are

the transactions in S and the arcs, i - representing 'transaction ]

depends on J', are assigned according to the following rules:

i -> iff

(1) w(d j) and r(d j) are in S, or

(2) rj(dk) and w1 (d') are in S and X << i, or -

(3) Wj(d J ) and rk(di) are in S and j < i.

Intuitively, this means that-- a transaction i is said to depend on

(i.e., must follow) transaction j if i reads a version of a data element

created by j, or i writes over (i.e., creates a subsequent version) a

version of a data element read by j, or i writes over a version of a

data element created by j and the version created by i is read by any

transaction. Assuming a read-only/write-only data model, the following

theorem is given in <Bernstein82>:

Theorem. A mv schedule S is serializable iff there exists a version

order << such that TG(S, << ) is acyclic.

It is. shown that, under this definition, testing for serializability

given a mv schedule is NP-complete. Intuitively, the complexity of the
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testing algorithm stems from the combinatorial explosion of the number

of possible version orders that the algorithm must examine. However, if

a version order is given, then the problem is reduced to one which

tests for cycles in a simple graph, which is not a hard problem.

In <Papadimitriou821, a mv schdules is defined to be composed of read

steps in the form of rj(d) and write steps in the form of wv(d'), where

rj(d) denotes 'transaction j reads an (unspecified) version of d' and w"

(d) has the usual meaning. In other words, the my schedule in this

definition retains the flexibility of assigning versions to be read, so - 1

long as the assignment satisfies the constraint that a version must be

created before it is read. With this additional flexibility, testing

for serializability of a schedule--must also take into consideration all

the possible ways of assigning versions to the read steps. Therefore, a

mv schedule is serializable if and only if there exists an intePPPeta-

tiOn I of the schedule, i.e., an assignment of versions to read steps in

S, and a version order <<, such that the transaction dependency graph

TG(S,I,<<) is acyclic. Intuitively, the term 'an interpreted schedule'

is equivalent to the term 'a schedule' in the previous definition. It

is not difficult to see that testing for serializability of a schedule

under this second definition is also NP-hard, while testing for

serializability of an interpreted schedule given a version order is

equivalent to testing for existence of cycles in a simple directed

graph.

-48-

I

• % " ..- %, %*,°%o°,. ..%oo"°*° .'..o*.. ,.. . . . . . °'.
.'..'..'.'.-, .' ".'." ,,',%'... . . . . . . . . .. . . . ... .... ,"... . . .'. ',,... ,, ., ..

.
,



It can be concluded that, while testing for serializability of a mul-

ti-version schedule is a hard problem, it is quite straight-forward if

the my schedule is interpreted (i.e., version numbers have been assigned

in the read and write steps) and a version order is determined. For our

purpose, fortunately, the schedules that must be tested for

serializability, in order to prove the correctness of the protocols, are

interpreted, and the specific version orders are given. We summarize

the above discussion by giving the following definitions and a theorem

which give the definitive word on how to prove correctness of our

mutli-version concurrency control algorithm to be developed in the sub-

sequent chapters.

DefinftfoD. A schedule S of a set of transactions T is a sequence of

steps, each of which is denoted as a tuple of the form a,(d J). ai

refers to an 'action' on behalf of a transaction ti. The action can be

read (r) or write (w). dJ is a version of a data granule, where d indi-

cates the data granule and j indicates the version. If the action is

write, then the version of the data granule included in the step is cre-

ated by the transaction. If the action is read, then the transaction

reads the version of the data granule indicated in the tuple.

An example of a schedule is w1 (d'), r2 (dl), w2(dJ), r3(dJ).
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Definition. Assume that a version.order, denoted as <<, is given. A

version j of a data element d is the pPedecessoP of a version k of d if

j << k and there exists no version i of d such that j << i << k.

Oefinition. A transaction dependency graph of a schedule S is a

digraph, denoted as TG(S), where the nodes are the transactions in S and

the arcs, representing direct dependencies between transactions, exist

according to the following rules:

t2 tl A iff

(1) w1 (d) and r2 (dJ) are in S for some dj, or

(2) r1 (d
j) and w2(dk) are in S for some dJ,dk where dJ is the

predecessor of dk, or

(3) WI(dJ), W2(dk) and r3.(dk) are in S and dj is a predecessor

of dk.

In other words, the transaction dependency graph represents a

relation - (i.e., 'depends on', or 'follows') of transactions such that

t2  tl if t2 reads a version of a data granule created by tj or if t2

creates a version of a data granule whose predecessor has been read by

ti, or t2 creates a version of a data granule whose predecessor was cre-

ated by t1  and the version created by t2 is eventually read by some

transaction in S.

The following theorem follows from the discussion given previously:
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*Theopemf. Given a version order <<, a schedule S is serializable if f

TG(S) is acyclic.
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3.0 HIERARCHICAL DATABASE DECOMPOSITION - DEFINITIONS AND PROPERTIES

As discussed in Chapter one, the hierarchical timestamp algoirthm for

concurrency control is devised to explore the opportunity that a set of

hierarchically organized applications of a database may present. A

hierarchy of applications was briefly described as one in which the ...

transactions belonging to applications at one level of the hierarchy

would only read from, but would not, or would rarely, write into data

produced by applications of an earlier (i.e., a higher) level. Hierar-

chically organized applications may offer an opportunity to optimize a

concurrency control mechanism because those read accesses from a trans-

action at one level to data produced by transactions at a higher level

may be synchronized using a special, less expensive protocols. In this

chapter, we will formalize this concept of 'a hierarchy of applications'

and set the stage for presenting the actual algorithms in the subsequent

chapters.

We capture the essence of a hierarchy of applications through the

definition of a data segment iei'echy. A data segment hierarchy, con-

structed during the database installation phase (i.e., before run time),

is basically a partial order of a given set of data segments of the

database subject to additional graph-theoretic constraints and con-

straints related to transaction accesses. In this chapter we will
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_ . discuss only what constitues (i.e., the formal definition of) a data

segment hierarchy given a database segmentation. We will not, however,

address the issue of hOw the database segmentation scheme is arrived at

and how an optimal data segment hierarchy, if there exist more than one,

can be found. The latter issues will be addressed in a later chapter on

database decomposition methodology.

3.1 DATABASE PARTITION AND THE DATA SEGMENT GRAPH (DSG)

Let the database be partitioned into a number of dat8 sgmets. We

will use the concept of a data sagm et groph OSS), constructed by means

of transaction analysis, to ref-lect the accesses by database trans-

actions to the data segments in a database. As will be shown later, the

topology of the data segment graph will be used to analyze whether a

particular partial order of the data segments constitute a data segment

hierarchy relevant to the hierarchical timestamp (HTS) concurrency con-

trol scheme.

Informally, let a database be partitioned into data segments. A DSG

is a digraph with nodes corresponding to the data segments and arcs con-

structed in such a way that there is an arc from a data segment D i to

another data segment Dj if and only if one can find a potential trans-

action in the database system that updates data elements in D, and

accesses (i.e., reads or writes) data elements in D1 . In other words,
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D, Dj, 1 0 J, indicates that there exist transactions in the system

that would link updates of data elements in Di to the content of data

elements in Dj.

Oafifitioni. Let Tu be a set of update transactions to be performed

on a database D. Let P be a partition of D into data segments

...,Dn. A d8ta hiaraliCy gPa8P of P with respect to Tu is a digraph

denoted as DSG(P,Tu) with nodes corresponding to the data segments of P

and a set of directed arcs joining these nodes such that, for i 0 J, D,

- Dj iff there exist t e Tu s.t. w(t) 0 Di ii empty and .a(t) 0 Dj -

empty, where t is a transaction, w(t), r(t) and a(t) the writt set, the

read set and the access set of transaction t. (The access set a(t) is -.

the union of r(t) and v(t).)

Construction of a data segment graph given a set of data segments and

update transactions is illustrated in Figure 6. The data segment graph

is a tool for capturing the pattern of accesses among transactions to be

run in the system. Note that, in our algorithm, there As no need for

read-only transactions to participate in this transaction analysis,

eliminating the difficulties of pinning down, a priori, the nature of

all ad hoc queries.

3.2 THE DATA SEGMENT HIERARCHY (DSH)

-54-

................... .* .*....K...<x . .........-' ... . .... .,,-,..... .. _..',.. '........'_,_,.",. ".:... .,,.". .'* ''



Data Segments Data Segment Graph
DSG(P, Tu)

D2 D30 ~Transaction D D
Analysis0 0D4 D5

where Transaction Analysis is performed on the set of update
transactions Tu in the system, and Di 4* Dj iff (1) i 0 j
and (2) among transactions that write into Di, there exists
one thaz reads from~ or write intc Dtj.

Figure 6. Illutration of a data segment graph DSG.



In this section we will give the definition and the properties of the

data segment hierarchy. We first briefly introduce the concept of a

digraph called a semi-tree. This concept will then be used in the defi-

nition of data seguent hierarchy. Informally, a semi-tree is a digraph

such that, if the directions of the arcs in the graph are ignored, the

graph appears to be a spanning tree.

Defintion. A Se-tPe is a digraph such that there exists at most

one undirected path between any pair of nodes in the graph. Every arc

in a semi-tree is called a CHUtical UPC.

An example of a semi-tree is shown in Figure 7. By deinition, a

semi-tree has the property that there exists at most one directed path

between any pair of nodes. Now we give the definition of a data sequent

hierarchy.

Definition. Given a data partition P and a data segment graph

DSG(P,TU), a data segment hiewaPchy, denoted as DSH(P,TU), is the tran-

sitive reduction of any non-cyclic graph of nodes in DSG(P.Tu) such that

(1) DSH(P,TU) is a semi-tree, and

(2) If Di -> Dj is contained in DSG(P,Tu) then either Di -> Dj or D-

-' Di is contained in the transitive closure of DSH(P,TU). •

In other words, a data segment hierarchy for a given partition is a

partial order of the data segments such that between any pair of data

o. V. °
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rzgure 7. illustration of a semi-tree and a data Segment

hierarchy.



segments that are ordered in the partial order there exists only one

hierarchical path that leads one data segment to the other. In

addition, any pair of data segments that are connected via a directed

path in the data segment graph, defined in the previous section, must

also be ordered in this partial order. An illustration of a data seg-

ment hierarchy is also shown in Figure 7.

The reason why these restrictions are placed in the definition of a

data segment hierarchy, i.e., the reason why it is not simply the tran-

sitive reduction of any non-cyclic graph, will be made clear after we

define the concept of transaction classfication in the next sub-section.

Here we address the issue of the existence of DSH given any database

partition. . .

There may be multiple data segment hierarchies that satisfy the above

definition given a database partition. However, since any total order

of the data segments is a semi-tree, the existence of a data segment -

hierarchy given a database partition is always guaranteed because any

total order that has DSH(P,TU) as a subset can be used as a data segment

hierarchy.

LaeDn 0.1. (Existence of DSH) Given a database partition P and a set

of update transactions Tu, there exists a data segment hierarchy

* DSH(P,TO).
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In the. remainder of this thesis, the notation DSH* refers to a par-

ticular chosen data segment hierarchy. We will say that a data segment

D is hfgheP than a data segment Dj, denoted as D, +> Dj, in a data seg-

ment hierarchy DSH*, if there exists a path in DSH* from Dj to D1 . In

general, we say that data segment Di and data segment Dj are eltd if

either Di , Dj or Di and Dj are connected by a directed path. We will

also denote the path from Di to Dj in DSH* as CP1
j (CP standing for

Critical Path.)

3.3 TRANSACTION CLASSIFICATION

As discussed before, the purpose of defining a data segment hierarchy

for a database is to formally capture the concept of a 'hierarchy of

applications'. Therefore the concept of a data segment hierarchy must

be paired with a scheme which assigns the transactions in the system to

correspond to some levels in the data segment hierarchy. We accomplish

this by 'classifying' transactions based on the hierarchical positions

of the data segments that the transactions have to write into. We first

give the following property.

P opeity. If there exists a transaction t in Tu such that Di 0 w(t)

0 empty and Dj 0 w(t) 0 empty and Di 0 Dj, then D i and Dj are.ordered in

DSH(?,TU).
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.. .." 4 • " . - -.- . ..... . . . . . 4 °  . .- . ..... . . . ..- . . .. . .% % %. " . .. " . .-59-• . o. . .. .

,I-------- . . _ . • . . . . . . .. ..• ,. _ j ' - - -- ," , ,-. ,-, _.'



PPOOf. Follows directly from the definition of the data segment

hierarchy.

That is, if a transaction writes into more than one data segment,

then all the data segments that it writes into must be connected by a

directed path in the data segment hierarchy.

Given a data segment hierarchy DSH*, we will assign update trans-

actions in Tu to the higkL t data segment it writes into. (The fact
J

that a highest data segment exists follows from the above property.)

Formally,

Definition. Given a DSH*, a transaction t is Proted in a data seg-

ment DI, denoted as t i Di, iff (.) w(t) 0 D, 0 empty, and (2) if there

exists Dj 0 Di such that w(t) 0 Dj 0 empty, then Di f> Dj in DSH*.

As a digression, we can now discuss the motivation behind our defi-

nition of DSH. The goal is to build a partial order of the data seg-

ments such that we can define a 'rooting scheme' of the transactions

such that (.) if a transaction is rooted in Di and has to access data

elements in Dj then Di and Dj are ordered in the data segment hierarchy

(i.e., it is possible to determine whether an access is from a trans-

action rooted in one data segment to a higher, lower or the same data

segment in the segment hierarchy,) and (2) this ordering is established

through a unique path in the partial order. These are the basic proper-
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ties of a DSH that, as will be shown later, are relied upon by our

concurrency control algorithm. The following property formalizes the

above discussion:

Ppopepty. (The Basic Property of a Data Segment Hierarchy). Let

DSH* be a data segment hierarchy for a database partition P with a set

of udpate transactions Tu. Let t i Di in DSH*. Let d e Dj be a data

element in the access set of t (i.e., d e w(t) U r(t).) Then either Di

= Dj or there exists a unique path between Di and Dj in DSH'.

Proof. If Di 0 Dj then by the definition of data segment graph Di ->

Dj is contained in DSG(P,TU). Therefore by the definition of data seg-

ment hierarchy there must exist a path between Di and Dj in DSH*. Since

DSH* is a semi-tree, by definition, the path between Di and Dj must be

unique. Q.E.D.

For notational convenience, we also define a transaction classifica-

tion which gives a name to a set of transactions rooted in the same data

segment.

Definition. A tPanSaCtiOn classification with respect to a data seg-

ment hierarchy DSH* for a database partition P and a set of update

transactions Tu, is a partition of the set Tu into transaction classes

Ti, T2, ..., Tn, such that a transaction t e T1 iff t is rooted in data

segment Di.
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Therefore a transaction classification partitions the set of update

* transactions into classes, each of which corresponds to a data segment

- in the data partition and the notation It ETi' has the same meaning as

It 6 D1'. Consequently, we will call accesses from a transaction to

data elements in its own root data segment as ifltPi-ClasS accesses,

* while accesses from a transaction to data elements in data segments oth-

er than its own root data segment as iiltei'-08lss accesses.

3.4 TYPES OF SYNCHRONIZATION PROTOCOLS

Eased on the above definitions, a hierarchy of classes of update

transactions is devised. A class -rooted in a data segment may access a

*data segment that is higher than or lower than the root data segment or

access data within its own root data segment. Since an update trans-

action is always rooted in the highest data segment that it writes into,

an access to a higher data segment Must be a read access, while the

* accesses to a lower or the root data segment Could be either read or

write. The rationale behind the HTS algorithm is the belief that it is

Possible to devise a synchronization protocol for accessing higher level

* data segments that is 'cheaper' than those accessing the root or the

* lower data segment. The purpose of such a hierarchy, therefore, is to

Makce it possible to classify an update transaction's accesses to the

database into accesses to a higher, lower or the root data segment, and
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differentiate the synchronization protocols necessary for controlling

each type of accesses.

In addition to the update transaction synchronization protocols, a .

protocol for synchronizing read-only transactions is also necessary.

The goal is to enable a read-only transaction to access any data segment

in the database without ever having to set read timestamps or be blocked

or be aborted. Recall that the construction of a data segment hierarchy

does not take into consideration the read-only transactions, therefore

there is not a concept of 'rooting' that applies to the read-only trans-

actions, and the protocols developed for the update transactions may not

always apply.

In summary, we have identified four types of synchronization proto-

cols each of which would apply to a type of database access:

(I) Synchronization protocol for reading a data segment higher than

the root data segment of the transaction.

(2) Synchronization protocol for reading or writing the root data

segment of the transaction.

(3) synchronization protocol for reading or writing a data segment

lower than the root data segment of the transaction.

(4) Synchronization protocol for reading any data segment by a

read-only transaction.

-63- . -. .

U- ... . .. . . . . . . * .. *•,.. -...".|

.. . . . . . . . . . . . . . . . . . ... . . . . . . . . . .



3.5 NON-CYCLIC VS. CYCLIC DATABASE PARTITION

In this section, we will present a type of database partition that

may result in a data segment hierarchy in which accesses to lower data

segments by an update transaction do not exist, and therefore is the

type of database partition that requires only two out of the three pro-

tocols for synchronizing update transactions listed in the previous sec-

tion: the protocol for reading higher data segments and the one for

accessing root data segment. As will be explained later, this would be

the kind of database partitions that are most suited for applying the

hierarchical timestamping algorithm. -

Based on the topology of DSG(P,T u) , a partition P can be of the

cyclic type or the acyclic type as defined below.

Oefiiitionf. A partition P of a database D into data segments is

acyclic (cyclici with respect to Tu if OSG(P,TU) is acyclic (cyclic).

We will give the properties of a non-cyclic database partition that

explain why accesses to lower data segment from a transaction rooted in

a higher data segment do not exist.

Properties of Ion-cyclic Database Partitions

. *. () Given a database partition P and its data segment graph DSG(P,TU)

where DSG(P,TU) is non-cyclic, there exists a data segment hier-
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archy DSH- such that the transitive closure of DSH* contains

DSG(PTu).

Proof. Since DSG(P,Tu) is acyclic, it defines a partial

order of the data segments. Any total order of the data segments

that contains this partial order is a data segment hierarchy.

Therefore there exists a data segment hierarchy DSH- such that

the transitive closure of DSH* contains DSG(P,TU). O.E.O.

We will refer to the DSH that satisfies the above condition

for a non-cyclic database partition as a natuprl DSH for the

partition. We will assume that for a non-cyclic partition the

data segment hierarchy chosen would always be a natural DSH.

(2) Let p be an acyclic database parition with respect to T. Then t

e Tu writes in one and only one data segment in P.

Proof. suppose t writes in two distinct data segments Di and

Dj. Then according to our rule of construction of the data seg-

ment graph DSG(P,TU), Di - Dj, Dj - Di E DSG(P,TU), therefore

DSG(P,Tu) cannot be acyclic which contradicts the assumption.

O.E.O.

(3) Let DSH* be a natural DSH for a non-cyclic database partition

with update transaction set Tu. Then every access to a non-root

data segment from any transaction in Tu is a read access to a

higher data segment.

Proof. Based on the definition of a data segment hierarchy,

every inter-class access to a higher data segment is a read

access. Therefore we need only to show that no access to a low-
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or data segment exists. This, however, is true because if it

were not true, and suppose some transaction rooted in Dj needs

to access some data element in Di and Di is lower than Dj in

DSH*, then there exists D, -> Di in DSG(P,TU) while Di -> Dj

cannot be contained in the transitive closure of DSH*, which

contradicts the definition of a natural data segment hierarchy.

Q.E.D.

The above properties establish the fact that only two types of

accesses exist for a non-cyclic database partition that has chosen a

natural data segment hierarchy: those to the root data segment of the

transaction or those (read accesses) to data segments that are higher

than the root data segment of the-transaction. In the following chapter

the concurrency control protocols for these two types of accesses are

developed and shown to be correct.

It is easy to see that for a cyclic database partition, the above

properties no longer hold. Therefore, to apply the hierarchical

timestamping algorithm to more generalized data base partitions,

accesses from a transaction to lower data segments must be considered.

In chapter five, we extend the theory provided in chapter four, and show

that such accesses can be controlled by a third protocol, and without -.

affecting the protocols developed in Chapter four, this set of three

protocols for synchronizing update transactions collectively ensure the

consistency of the database.
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Finally, in chapter six, we develop the protocol for synchronizing

read - accesses from read-only transactions that are run in a database

whose update transactions are Synchronized by the above three protocols.
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4.0 SYNCHRONIZING UPDATE TRANSACTIONS UNDER NON-CYCLIC PARTITIONS

Given a non-cyclical database partition, the two types of database

accesses from an update transaction are the read and write accesses to

its root data segment (intra-class accesses) and read acceses to higher

data segments (inter-class accesses.) The key to our concurrency con-

trol technique is the recognition that, if a transaction t belongs to a

class T1  that writes data segment Di and reads data segment Dj, and D•

is highaP than D, in the Data Hierarchy Graph, then this transaction

would appear to be a read only transaction so far as Dj is concerned.

Tbarafore when a request to read a data element d in Dj is issued by t,

there may exist a proper committed version of d that is Aaft to be given

to t without the need of leaving a read timestamp with d. However, the

way this proper version is computed must be such that the overall

serializability is enforced. In other words, the introduction of trans-

action dependency of t on t', where t' is the transaction in class Tj

which created the version of d that t is allowed to read, must never

induce cycles in the transaction dependency graph as defined in Section

2.2. To this end, a function called the activity link function is

devised to compute versions that inter-class read accesses may be

granted, and a theorem which testifies to the correctness of this compu-

tation is presented. Based on this theorem, a concurrency control

algorithm is also presented.
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Notations.

i() I(t) I the initiation time of a transaction t.

(2) C(t) * the commit time of a transaction t.

(3) TS(d v) - the inititation time of the transaction that creates the

version v of a data granule d, i.e., the write timestamp of dv.

(A data granule is the smallest unit that concerns the concurren-

cy control component of the database system, and is the smallest

unit of accesses so far as concurrency control is concerned.)

4.1 BASIC DEFINITIONS

The following definitions and properties assume a database with a

non-cyclical partition with respect to Tu and has a natural database

segment hierarchy DSH*.

Definition. A function I01od defined for a data segment Di is a

function which maps a time m to another time m', i.e., m' = Iiold(m),

such that m' is the initiation time of the oldest active (i.e.,

uncommited and un-aborted) transaction rooted in the data segment Di at

time m. Formally,

m if there exists no t E Di active at time m,
Ii0la(n) =1

tmin (I(t)) otherwise, where
t e T , I(t) < m and C(t) > m.
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Oef initio. Let the activity 1ik fuactioa A1j be a function defined

for a pair of data segments Di and Dj, where Dj D> it in DSH*. Ai

recursively maps a time n to another time as follows.

A1~~ld(m) if Di Di CPi j

Ak J (,(A k(M)) otherwise, where
Di Dk ". Dj "Cl:li

Intuitively, the purpose of function AjJ is to map a time m corre-

sponding to Di to another time m' corresponding to Dj where versions in

Dj before m' are considered 'safe' for a transaction rooted in Di and

started at time m to access. As an example, if the critical path

between D, and Dj -is Di Dk D1, t-hgn &1 J(n) =j1( A)

This as exemplified in Figure 8. -

4. CONCURRENCY CONTROL ALGORITHM FOR UPDATE TRANSACTIONS

Based on the definitions given above, we describe in this section the

concurrency control algorithm for synchronizing update transactions

under the hierarchical timestamping approach.

The algorithm is composed of two protocols, one for synchronizing-

intra-class accesses and one for synchronizing read-only accesses to

higher data segments. The former is equivalent to the conventional

7
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I. (d m) -Initiation time of the oldest active
transaction rooted in Di at time m:

iD

iold old

(m) I I k CM)) if Di 4Dk -,Dj

j kk

kD

Di.

Figure 8. Graphical representation of the I-Old function and the A

function.

-71-



- . r f..-

timestamp algorithm, where both read and write accesses will result in

timestamping the accessed data element. The latter is a protocol which

grants a particular version of the data element to the requesting trans-

action and involves no need for timestamping. This 'particular version'

is chosen to be the latest version right before a certain time ceiling

computed from the A function.

For the purpose of concurrency control, we assume that every data

segment is controlled by a MgMZt cotAote.-t which supervises accesses

to data granules within that segment.

Coscutrency control algorithm for update transactions:

For every database access request from an update transaction t e T

for a data granule d e Dj, the following protocol is observed: .. ' -

Protocol #

If i 0 J, then the segment controller of Dj provides the version d° of d

such that

TS(do) = Nax(TS(dv)) for all v such that

TS(dv) < Ai (I(t)).

(Note that no trace of this access needs to be registered in any form

for the purpose of concurrency control by the segment controller.)

Protocol E
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4.3 AN EXAMPLE

As an example, suppose a transaction t rooted in Di needs to read

data elements x e D1 , w e Dk, y e Dj, and write data element z i Da ,

where Dj +> Dk t> Di in the data segment hierarchy. An execution of

this transaction using protocols H and E is shown in Figure 9 where the

dots represent versions of data elements and the circled dots represent

versions to be accessed or created by t. In essence, to read x, t is

given the version right before- I(t) (the circled version of x in

Figure 9) and 1(t) is left as the read timestamp with this version of x.

To read w, t is given the version right before Ajk(I(t)) (the circled

version of w in Figure 9) but no timestamp is left with this version.

To read y, t is given the version right before AiJ(I(t)) (again, the

circled version of y in the figure) and no timestamp is left. Finally,

to write z, the latest version of z is found and verified to be a ver-

sion earlier than I(t) and which does not have a read timestamp greater

than I(t). Then a new version of z is created with a timestamp I(t).

It can be seen that the difference between this execution and that of

one using the conventional timestamp scheme lies with the way w and y
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data
elements

Dj y

Dk v

Di

x IP

I ) time

A I 1(t)) A. k (I~t) I(

* a version of a data element

O versions to be accessed by t

Sversion to be created by t

*a transaction rooted in Di with timestamp

I(t) and reads x, w, y and writes z

Figure 9. ::.lustration of Applying Protocol H and Protocol E.
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are accessed, which, under the HTS scheme, does not interfere at all

with transactions that are concurrently updating w and y.

4.4 PROOF OF CORRECTNESS

serializability is enforced. In order to do this, we follow the steps

listed below:

(1) Define a relation called 'toplogically followa', denoted as'---

between a pair of transactions and prove two properties of the

relation.

(2) Show that these properties of the relation '->' lead to Theorem

1, which states that if a concurrency control algorithm allows a

transaction tj to directly depend on another transaction t2 only

if t, = t2, then the transaction dependency graph is cycle

free.

(3) Show that the two protocols introduced previously allows a tj to

directly depend on a transaction t2 only if tj => t2, which con-

cludes that the above algorithm preserves serializability.

Definition. A relation tOlPo0giCally follows (denoted as is) js

defined for a pair of transactions ti, t2, where tj 6 Di, t2 6 Di, Di

and Dj are connected by a critical path in a chosen data segment hierar-
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chy DSH*, i and j not necessarily distinct. We say that tl

..: topologically follows t 2 (or t, -= t 2 ) iff

(I) if D, Di then 1(ti) > l(t 2).

(2) If Di *> Dj then I(tj) - Aji(I(t2)).

(3) If Dj +> Di then I(t2) < A1 l(I(jl)).

Intuitively, => is a relation between transactions based on both the

timing of the transactions and the hierarchical levels in the THG of the !

transaction classes that the transactions belong to. To be more specif-

ic, 'ti => t2' always means that tl is 'later' than t2- However, this

'later' is not only based on the initiation times of the two trans-

actions involved, but also on the relative levels of the data segments

in which tl and t2 are rooted: Given a fixed t2, the lower the level of

the data segment in which t1 is rooted, the later tl's initiation time

has to be in order for tl => t2 to hold. Clearly, -- is defined only

between transactions that are rooted in data segments that are on a

critical path in DSH*, because otherwise the A function is undefined.

This relation is exemplified in Figure 10. Two interesting properties

concerning the relation => are presented below:

Property 1.1. The relation => is anti-symmetric. (This directly

follows from the definition of the relation.)

-76-
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t2 -(1) if Di Dj
a then 1(U) ) I(t2)
ti

____ ___ ___ ___ ___ ___time

1(t2) I1(n)

Di -i Dj

.tim A~(I~t))tim

D t

(2) if Di higher than Dj (3) if Dj higher than Di then

then I(tl) > A i(I(t2)) 1(t2) < A~j(I(tU))

-4gure c.Graphical representatiol of the relation ti => t2.



Property 1.2 (The ppoperty of transitivityl. The relation => is

critical-path transitive, i.e., if there exists tl 6 Di, t2 e Dk, t3 6

DJ, Such that t i => t 2, t2 => t 3 and Di, Dk and Dj are on a critical

path in DSH*, then tj => t3.

Proof. To prove this, we first give the following two obvious prop-

erties of the function A:

(0.1) If Dj Dk > Di in DSH* then Akj(AIk(m)) = A1 J(m). (This

directly follows from the fact that in DSH* of there exists one

and only one critical path between any pair of data segments.)

(0.2) Ail(m) has a non-negative slope (i.e., if i > m' then A1j(m) k

Aij(m'), and if A1 j(m) > A1j(m') then m > m'.)

We consider the following 5 groups of cases:

(1) Di - Dk = Dj. By definition of -> we have I(tj) > l(t2) > I(t3)•

Therefore tj => t3 -

(2) Di = Dk Dj. Two cases are considered:

(2.1) Di +> Dj. Then t 2 => t3 implies I(t2)k Aj1 (I(t3)). tl

WO t2 implies l(t 1 ) > I(t2). Therefore l(t1 ) > A 1(I(t3)).

Therefore t1 " t 3-

(2.2) DJ +> Di. Then t1 => t2 implies I(t1 ) > I(t2). By Prop-

erty 0.2 we have A1 J(I(t1 )) > Aj1 (I(t2)). t2 => t3 implies

A1j(I(t 2)) > 1(t3). Therefore AJ(I(t1 )) I(t3). There-

fore t 1 = t 3 -

(3) D, D = Dj Two cases are considered:
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(3.1) D, t> Dj. Then t2 => t3 implies I(t2) > I(t3). By Prop-

erty 0.2 we have Aj1(I(t2)) t Aj1 (I(t3)). ti => t2 implies

I (t1 ) t Aj1 (I(t2)). Therefore I(t1 ) t Aj1 (I(t3)). There-

fore t, => t3 o

(3.2) Dj t> D i. Then t 2 => t 3 implies I(t 2 ) > I(t 3). t i => t 2

implies Ai(I(ti)) > 1(t2). Therefore AIJ(I(tl)) > I(t3).

Therefore t, => t 3 -

(4) Di = Dj # Dk . Two cases are considered:

(4.1) Di > Dk. Then tI => t2 implies I(t1 ) > Ak1 (I(t2)). t2

=> t 3 implies Aki(I(t2)) > I(t 3). Therefore I(t1 ) > 1(t3 ).

Therefore tI => t 3 -

(4.2) Dk t> Di. Then tI :> t2 implies A1k(I(tl)) > I(t2). t2

=> t3 implies I(t2)
> A1k(I(t 3)). Therefore Aik(I(tl)) > A1

k(I(t 3)). By Property 0.2 we have I(t1 ) > I(t3). Therefore

tj => t 3 .

(5) Di # Dk 0 Dj, Di # Dj. Six cases are considered:

(5.1) Dj > Dk t> DI. Then t, => t2 implies A1 k(I(t,)) > I(t2).

From Property 0.1 and 0.2 we have Aij(I(t1 )) = Akj(Alk(I(tl

) Akj(I(t2)). Therefore A1J(I(t1 )) - Akj(I(t2)). t2 =>

t3 implies Ak3(I(t2)) > I(t3). Therefore AJ(I(tl)) > I(t3

). Therefore tj => t 3.

(5.2) Di t> Dk t> Dj. Then t2 => t3 implies I(t2)- Ajk(I(t 3)).

From Property 0.1 and 0.2 we have Ak'(I(t 2)) t Ak'(A M(I(t 3

) Aj(I(t3)). tI => t 2 implies I(t1 )) 
> Aki(I(t2)).

Therefore I(ti) t A,1 (I(t3)). Therefore t, => t3 .
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(5.3) DJ * Di Dk. Then t1 = t 2 implies I(t 1 )t Akl(I(t2)).

From Property 0.1 and 0.2 We have A1
1 (I(t,)) t i(k'It

-Akj(I(t 2)). t2 =~t 3 implies Akj(I(t2)) > I(t3).

Therefore A1 '(I(tl)) > I(t3). Therefore tj => t3.

(5.4) Dk " Di t Dj. Then tj O> t2 implies A~ki~t > I(t2).

t2=> t3 implies IVt2) Aj(I(t 3)). From Property 0.1 and

0.2 we have Aik(I(t1)) > Ak(I (t3)) = A~k(Ajl(I(t3))) There-

fore 1(tj) > Aj1(I(t3)). Therefore t1 -> t3 -

(5.5) Dk t> Djt D1. Then t1 -> t2 implies Aik(I(tO)) > 1(t2).

t2 => t3 implies IVt2) Ajk(I (t3)). Therefore A~k(I(tl)) >

Ajk(I (t3))- However, A-,k(I(t 1 )) = Ajk(AjJ(I(t1 ))). There-

fore A1 j(I(t,)) > I(t3). Therefore tj = t3 -

~(5.6) Di t Dj t Dk. Then t1 O> t2 implies I(t1)t Ak' (I(t2)).

But Aki(I(t2)) =Aj
1 (Akj(I(t2))). And t2 => t3 implies Ak

(1(t2)) > I(t3). Therefore Aki(I(t 2)) Aji(IMt3 ). There-

fore I(t1) t Aji(IMt3 ). Therefore tj t3 -

In each group, we have permutated the order of levels among the dis-

tinct transaction classes to arrive at a total 13 cases. These cases

exhaust all the possible situations that govern tj, t2 and t3 and for

every situation transitivity is shown to hold. Therefore we conclude

that =>is critical-path transitive. O.E.O.
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We now define the following synchronization rule and show that if a

concurrency control algorithm enforces this rule then the transaction

dependency graph is cycle free.

Definition. We say that the paPtitiOn synchionization Pole (abbrevi-

ated as PSR) is enforced in a schedule S of a set of transactions T giv-

en a data segment hierarchy DSH* if, for any ti, t2 e T, ti t2 E TG(S)

implies that t1 :> t 2 .

In other words, a concurrency control algorithm enforces the parti-

tion synchronization rule if it allows direct dependencies to occur

between transactions tj and t 2 only if ti => t 2 -

We now prove that a concurrency control algorithm that enforces PSR

is also correct. This involves proving that a concurrency control algo-

rithm that enforces PSR will only produce schedules whose transaction

dependency graph is cycle-free. The following theorem therefore consti-

tutes our proof.

Thoempe 1. Let TG(S) be a transaction dependency graph of a schedule

S of a set of udpate transations Tu run on a database with a non-cyclic

partition P, and the schedule S observes the partition synchronization

rule with respect to a natural data segment hierarchy DSH', then TG(S)

has no cycles.
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Proof. In order to prove Theorem 1, we first give the following two

definitions and a lemma about the transaction dependency graph.

Definition. A Critical path dependency, between two distinct trans-

actions t1  e Di and t2 e Dj, denoted as CD(t 1 , t2),is a cycle-free .---

dependency path from tj to t 2 in TG(S) and Di and Dj are on a critical

path in DSH*, i and not necessarily distinct.

Definition. A boundary critical path dependency in TG(S) between two

transactions t 1 E Di and t 2 E Dj, where t1 # t 2 , denoted as BCD(t1 , t 2

)is a CD(tj, t2) such that either or both of the following are true:

-(1) There exists t 3 e Tk Such that t1  t3  ECD(t15 t2) and Di, Dj and

Dk are not on one critical path;

* (2) There exists t 4 6 DI such that t 4 -. t 2  ECD(tl 1t 2) and Di, Dj and

D, are not on one critical path.

These two concepts are illustrated in Figure 11.

Property. If BCD~t 1 , t 4 ), where t1 e Di and t4 e Dj, then there

exist z2 E Ok and t3 E DI, t 2 , t 3 not necessarily distinct, such that

CD(t 1, t2) C CD(t 1 , t,,), CDl(t 2 ,t-' C CD(t 1 f t 4 ), C:D(t 3 ,t 4 ) C CD(t 1, t 4

and D. , Dj, Dk arnd D, are on one critical path in DSH-. (This direct-

ly follows from the fact that OSH* is a semi-tree.)
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Lemma 1. If there exists a critical path dependency CD(tl,t 2) in a

transaction dependency graph TG(S(T)) where the schedule S enforces the

partition synchronization rule, then t => t2.

PPoof. Let t be the length (in number of arcs, i.e., direct depend-

encies) of a critical path dependency. Then t has a total order and is

bounded from below by 1. By way of complete mathematical induction, to

prove that if CD(tlt 2) then tj => t2, we have to show the following:

(1) If t(CD(tlt 2)) = 1 then tj => t2.

(2) If t(CD(t1 ,t2)) = g and if ta => tb for all t., tb s.t. there

exists CD(ta,tb) and t(CD(ta,tb)) < g, then tj => t2.

Now we prove the above two statements.

(1) In this case, CD(t1,t2)= ti - t2. Since S enforces the partition

synchronization rule, by definition, we have t1 => t 2.

(2) To prove the second statement, let t3 E Dk and t4 e D1 be such

that tj - t3 C CD(tj, t2), t4 - t2 e CD(t1 , t2), and a path,

denoted as Path(t3 ,t4), from t3 to t4 such that Path(t 3,t4) C

CD(t1,t2). Also let tj e Di and t2 e Dj. Consider the follow-

ing two cases:

(2.1) If CD(t1 ,t2) is nOt a BCD, then Path(t 3,t4) is a CD(t 3,t4

). Since Z(CD(t1 ,t2)) < g therefore tj => t2. And by the

definition of CD, D,, Dj, Dk and D, must be on one cri.tcal"

path of DSHa. Therefore we have tl - t3, t4 - t2 and t3 =>

t4. By Property 1.2 (i.e., the property of critical path

transitivity) we have t1 => t2.
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(2.2) If CD(tI1 t2) Z. a BCD, then by the property above of a BCD

we have that there exist t5 E Dm and t 6 'e Dn such that CD(t1

,t5) C CD(t11 t2), CD(t5 ,t6 ) C CD(tl,t 2), and CD(t6 ,t2) C

CD(tl3 t2), where Dm, Dn, Di and Dj are on one critical path

of DSH*. Since t(CD(tl, t5 ))< g, therefore t1 => t 5 .

Similarly, t6 => t2 and t5 => t6 . By Property 1.2 we con-

clude t, => t2. 4.E.O.

Now we are ready to prove Theorem 1.

Theorem 1.

Proof. Suppose there exists a cycle. Then the cycle involves at

least two transactions t1 and t2 that belong to transactions that are on

one critical path. This means that there exist CD(t'1 ,t2) and CD(t21 t1 )

By the above lemma, CD(tl,t 2) implies tj => t2 and CD(t2 ,t1 ) implies t2

=> t'. However, => is anti-symmetric (by &propl1.). Therefore tj => t2

and t2 => t, cannot be true at the same time. Therefore there can be no

cycle in this transaction dependency graph. Q.E.O.

We conclude that if a concurrency control algorithm enforces the

Paritition Synchronization Rule then it is correct. What is left i s to

show is that Protocols H and E enforce this rule. Therefore we must

show that, by employing these protocols, ti -> t2 implies t, => tj.

This is translated into the following three cases:
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(1) if t1 and t2 are rooted in the same data segment, the algorithm

must allow tl to read a version v of a data granule d created by t2, or

to create a new version of a data granule d whose latest version dv was

created by t2, only if t2 has an inititation time that is less than that

of ti. (i.e., only if TS(dv) < I(t1 ).)

Protocol B of our algorithm satisfies this requirement.

(2) If t1 is rooted in Di of a lower level while t2 in Dj of a higher

level, then the algorithm must allow tj to read dv created by t2 only if

t2 has an initiation time less than A1J(I(t 1 )). (i.e., only if TS(dv) <

Ai, (I(ti)).)i

Protocol A of our algorithm satisfies this requirement.

(3) If tl is rooted in Di of a higher level while t2 in D, of a lower

level, then the algorithm must allow tj to create, at time m, a new ver-

sion of a data granule whose predecessor dv has been read by t2 , only if

tj has an initiation time greater than or equal to Aj!(I(t 2)).

This, however, is always true because, by the very fact that t 2 by

time m has already read dv we know that I(t2) < m, and therefore A,':(I(t

2)) 5 Ail(m). Also, because of the fact that t 1 is active at m (i.e.,

not committed yet at m) we know that A,'(m) < 1(t 1 ). This leads to the

conclusion that I(t1 ) Z Aj'(I(t 2)).
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Therefore we conclude that our algorithm enforces PSR, which corn

pletes our proof.

-87-



5.0' SYNCHRONIZING UPDATE TRANSACTIONS UNDER CYCLIC PARTITION

In this chapter we will extend the algorithm developed in the previ-

ous chJkpter, which handles the special case of a non-cyclic parition, to

I- include the capability of, handling cyclic partitions. As mentioned 7

before, the difference between a non-cyclic and a cyclic partition is

that in the former the only inter-class accesses are the read-only

accesses to higher data segments, while in the latter the inter-class

accesses include reads and writes to lower data segments as well. In

the theorems proven in this chapter, we will show that the existence of

* accesses to lower data segments in a data segment hierarchy can be

treated independently from the treatment of those that are intra-class

or to higher data segments. That is, to deal with non-cyclic partitions

in which accesses to lower data segments exist, one needs only to add

another protocol on top of the protocols already devised in the previous

chapter for intra-class and higher-level accesses.

We will first give the definitions of some functions that are needed

in describing the protocol. Then we provide a description of the proto-

col, followed by an example of the use of the protocols and the proof of

correctness.
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5.1 BASIC DEFINITIONS

The following definitions assume that a data segment hierarchy DSH*
I

is given for a cyclic database partition. To compute the timestamps a

transaction uses to access data segments lower than the transaction's

own root segment, we will now describe the functions Cilate and Bji that

can be considered conceptually the aveue of functions 1 oi° d and A1i.

These functions are illustrated in Figure 12.

Definition. Let C1 late: m - m' be a function which maps a time m to

another m' where Di is a data segment and Cilate(m) is determined as

follows.

m if there exists no t e D i active at time m,late m) =-"-..
* c~t~m) M{x:(C(t)) otherwise, where

t e Dj, I(t) < m and c(t) > m.

That is, C, ate(m) is the -tte.4t commit time of all transactions rooted

in Di that started before time m.
p

While the A function maps a time in a lower segment to the initiation

time of some transaction rooted in a higher segment, the B function maps

a time in a higher segment to the commit time of some transaction rooted

in a lower segment:

p

," .

• .



lateC. () Commit time of the transaction that
commits the latest among all trans-
actions rooted in Di active at time m

Di

~time
1late

MC. (mn)

3. -~ kate (C Ia::e() if Dj - Dk ->Di

N) Di

late
m B

* Dk

Dj

Figure -12. :I:ustration of- Function C-late and Function S.
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Definition. The Backward activity link function, defined for a pair

of data segments Di and Dj, where Dj t> Di, denoted as Bj'(m),is a

function which maps a time value m to another such that

m if Di = Di

Bj'(m) Cjate(m) if Di - = CPij

Bk (Bj k(M)) otherwise, where Di - ... - Dk DJ = CPi.

5.2 THE SYNCHRONIZATION PROTOCOL

Now we introduce the hierarchical timestamp protocol for cyclic par-

tition.

Hierarchical Timestamfp Protocol For Update Transactions:

For every database access request from an update transaction t e Di

for a data granule d e D,, the following protocol izs observed:

Protocol E (for accessing a segment Equal to root segment]

If Dj = D i, then

(I) If it is a read request, then grant the latest version before

I(t) of d, and leave I(t) as the read timestamp of this version

of d if Its current read timestamp is smaller than I(t).
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(2) If it is a write request, then if the read timestamp of the lat-

est version before I(t) of d is smaller than I(t), then create a

new version of d with version number I(t). Otherwise abort t.

Protocol H (For accesssing Higher segments!

If Dj I> Di then grant t access to the latest version before Aij(I(t))

of d.

Protocol L (For accessing Lower segments)

If Di 1> Di, then

(1) If it is a read request, then grant the latest version before B1
j

(I(t)) of d, and leave Bij(I(t)) as the read timestamp of this

version of d if its current read timestamp is smaller than Bli

(1(t)).

(2) If it is a write request, then if the read timestamp of the lat-

est version before Bij((t)) of d is smaller than B1j(I(t)), then

create a new version of d with version number B ij(I(t)). Other-

wise abort t.

Several observations are made of this set of protocols:

(i) If the database segment hierarchy DSH* consists of a single data

segment, then only Protocol E will apply, and the hierarchical

timestamp algorithm is reduced to the conventional MVTS algo-

rithm.

-92-
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(2) Since no transaction will write a data segment higher than its

own root segment, Protocol H needs to cover only read accesses.

More importantly, Protocol H is 'cheaper' than either Protocol E

or Protocol L, since it does nct require timestamping the data

element accessed.

(3) Protocol L is essentially the same as Protocol E with the excep-

tion that the timestamps used are different from the timestamps

of the accessing transactions. Since B1i(I(t)) ? I(t), Protocol

L is the most 'expensive' among the three, in addition to the

difficulty discussed in the following paragraph.

There is a difficulty associated with implementing Protocol L. To

compute Bij(i(t)) as a timestamp to synchronize access requests from a

transaction t is a tricky matter since theoretically BiJ(I(t)) is not

'computable' until at least after transaction t has committed. This

dilemma can be resolved by artificially computing (i.e., 'guessing') the

*. value of B functions and enforcing it at a later time. To do so, an

late vle n nte lo
algorithm is designed to compute pseudo-C i  values, and another algo-

*' rithm, which is a recursive application of the first algorithm, is used

to computer pseudo-Bil values. The first algorithm returns the

°. psuedo-Clate value by adding a constant a1 > 0, generic to a data seg-

*ment Di, to the argument value. In addition, it inserts constraints for

* concurrency control mechanism to enforce the validity of this computa-

.- tion at a later time. These two algorithms are as follows:

"." -93-
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pseudo C (Di, in): Function.

KInsert a pseudo transaction tl E Di such that I(t') m i and CWt) M i +

al.

Insert constraint: Abort all t" E Di s.t. I(t"l) < mn and C(t") > m +a 1

-Return (m +a0).J

(Assume Di Dil D012 .. i -

pseudo b (Di., Dj, in): Function

B = pseudo c (Di1, pseudo~c (D12,.. pseudo c (fij, m) ... ))

Return (B);

If ails are selected in such a way that a large portion of the

non-pseudo transactions rooted in Di can be executed in time less than a

~,the chance of having to abort transactions in Di in order to enforce

the constraint (i.e., step 2 of the algorithm pseudo c) is relatively

* small.

* 5.3 AN EMPLE

In this section we illustrate the use of protocols H, E and L for

* controlling update transactions through a simple banking example. The

scenario is as follows. The database is composed of zh.-ee types of

* information about customers: overdraft limits, demand deposit account -
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Data Segment Hierarchy:

di Overdraft Limits (0L)

d2 Account Balance (AB)

di 'oar. Balance (LB)

(dl , h ni OL, d2 -Si,'S AB, S-, =Si's LB)

Fo;r transactions:-

:: ncrement SmitE's Overdraf^t limit (Read dl, -wite d!)
* .;- rootec in D.)

:2 .::7aw frcm Smni:-' s 1-cccun: (Read d", 62, T.rite d^)
(zZ rooted ir D

1p Aprove laon for Smith subje:: to current account status
(R-ead d2, d 11 d , w'rite d3) (:3 rooted inD.,)

t:Decrement Sr-it's overdraft limi: ('Read d-. --2. -vite d!)
(t4 rooted in.

Figure !3. Scenario of an exam~le 411ustrating the HB'D updateL

protocols.
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Timing of even:s:

tl

t r r /i','. .r. 2. r,...

WlCt r

(D r r Uw/C

Execu=lon anC control sequence: :

.Oo00l vent Even- and

Nc. ontroi

- . reads ., cran:e: version C, sin:s i is before .k. 0 t 2

reads V', rane: version 0 ane leaves R-S s I(fl)

-,2 reacs c:Z, r an e version 0 anc ieaves R7: z"-

7 : reads d'., aranted version 0, sin:e it is before A ((t3))

- S 2 creates a new version of 12 (version I, ant :o rniJ:s

P : :3 -eacs ", cran:e= verison C, sin:e it is before AI' (1(-3))

t4, creates new versio,, of t version 'k an- -omits

- . . reacs V', crame version ", ant leaves R7S 1(,41-

t3 creats new version of d3 (version 1) anc commi:s

%4 res . ra-ntet version an,, ieaves F7t- Il( - c

t4 creats new version of dl (version 2) and commits

Figure :.4. T.mng and contro. responses of the example

.41Zustrat=ng he HDD upda-e protocols.
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balances (or simply 'account balances'), and loan account balances.

These types of information are organized into three data segments with a . -

data segment hierarchy shown in Figure 13. Also, three types of update

transactions are run against the database: overdraft limit update,

deposit or withdrawal against a demand deposit account, and loan payment

or new loan approvals. In the interleaved transaction execution to be

demonstrated here, a set of four transactions are run concurrently, and

the tasks involved in these transactions are also shown in Figure 13,

where dl, d2 and d3 are, respectively, the overdraft limit, the account

balance and the loan balance of a customer Mr. Smith's. The timing of

the interleaved read and write requests of these transactions to be

input to the concurrency control algorithm are shown in Figure 14.

Assuming that the current versions of dl, d2 and d3 are all version 0

and are all before the initiation time of the earliest transaction in

the set, i.e., 1(tl), the control responses that the concurrency control

facility would generate for each request are shown in Figure 14. As
t

shown in the figure, every request is granted at the time the request is

issued and, in this example, no blocking nor aborts are induced.

It is interesting to note that the same interleaved schedule of

read/write requests, if controlled by the two-phase locking algorithm,

would result in blocking and a deadlock. Specifically, when t3 issued

its 'read dl' request at time 10, dl was at that time read-locked by ti.

Since read requests do not conflict, t3 would be granted access to dl

and an additional read lock, owned by t3, would be imposed on dl. How-
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ever, When tl issued the 'write dl request at time 11, it would be

* forced to wait since it could not convert its read lock on dl to a write

lock when dl was at that time also read-locked by t3. Therefore, ti

could not commit and must wait for t3 to free its read lock on di. How-

* ever, when t3 finally committed and freed its read lock on di at time

13, dl had in the mean time also been read-locked by t4 at time 12,

therefore U. would now be forced to wait for t4 to commit. Unfortunate-

* ly, t4 could not commit at time 15 because it also needed to write di

and dl was held read-locked by U. Therefore, U. and t4 deadlocked at

time 15, and one of the two transactions must be backed out and

* restarted.

Similarly, if this interleaved schedule of read/write requests is

given to a conventional MVTS aglorithm, some aborts of transactions

* would result. In particular, tI would be aborted at time 11 in attempt-

ing to write dl and t2 would be aborted at time 8 in attempting to write

d2. Therefore this example also demonstrates a scenario in which the

the HDD protocols would have performed better in terms of level of con-

currency than the two-phase locking algorithm and the conventional

* multi-version timestamping algorithm.

* 5.4 PROOF OF CORRECTNESS

--- a
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'p !

Given the rules for testing for serializability (i.e., to show that

the transaction dependency graph as defined before is non-cyclic if the

above protocol is enforced,) the following steps are devised to prove --7

correctness of the HTS algorithm:

(1) Show that direct dependencies may occur only between transactions

that are rooted in segments that are related in DSH*.

(2) Making use of Theorem 1 proven in the previous chapter which

asserts that if a schedule S enforces the relation

'topologically follows', i.e., the relation '=>' as defined in

the proof of the previous chapter, on all direct transaction

dependencies (i.e., t2 -> ti e TG(S) only if t2 => t) then the

transaction dependency graph TG(S) has no cycle, show that the

HTS algorithm produces only schedules that enforce the relation

= on all direct transaction dependencies.

Lemma 2. Given a DSH' and let tj E Di and t2 6 Dj. If t2 -tl

then Di and Dj are related in DSH*.

Proof. Let d E Dk be the contended data element that causes t2 -> t

. Since at least one transaction writes d, we have either Di -(=) Dk

-(=) Dj contained in DSG(P,Tu) or Dj W(=) Dk -(=) Di contained in

DSG(P,Tu). By the definition of data segment hierarchy, Di and D3 must

be related in DSH*.
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Given the Theorem I which states that the relation => can be used as

a vehicle for ordering transactions for concurrency control purposes,

the following theorem completes our proof of correctness.

The oremf 2. Let s be a schedule that is permi~tted by the hierarchical

timestamp protocol. Then t2 -> tl E TG(S) only if t2 => ti. (i.e., The

hierarchical timestamp protocol enforces PSR under a cyclic partition.)

PPoof. We will first present the following 3 properties which bind

the functions A and B together are used to transform the timing

K

relationship imposed by the protocol to that defined by the relation ~

Ppopepty 2.1. Ai4 (Bj'(M)) m, where D1  D 1 1 --..

Din - Dj CPi' in the data segment hierarchy DSH*.

* POOf. Ai4 (Bjl(m)) =A 1 j(C1 1(...(Cin(C4 (m)))...)) (C j is an abbre-

viated expression for C4 la'O and Ij ia an abbreviated expression for Ij

0ld) Let mj - Cj(m). Then mi = C(t4
0 ) if there exists t eD4 active at

time mn and Cj(m) - C(tjO), and in4 = mn if there exists no t DjP active

at time m. Therefore A1'(32
1(in)) =Ai(Cii( ... (Cin(m))...)) continue

substitution of the L function in the expression with similarly defined

m .., il1 , we get A1
3 (Bi'(m)) =A~l(i.). Now we start spelling out

the function An: A 2 (rnco) = Afoo(I cu(m1 y)). Consider the following

two cases:

(1) If there exists no t E D active at i,, then 1 (mei)= hial.

Since mr, c Ti(Mi2) n, 2, we have I (m) mn12.

hirrhclIms~ rtclefre S ne ylcpriin).
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(2) If there exists t E Dil active at mil, then 1 11 (m11)= I(t 1 1 '),

where til'# tilO (since t11' is active at mi11 while t11
0 commits

at mn1 ), and I(t 1 1 ') M m12 (since if I(ti1l) < M12 then during the

previous application of C.l, Cil(mn 2) should be equal to C(t11')

and not C(ti1 °), and contradicts the assumption.) Therefore T11 (m

i1) > Mi2-

O Therefor we conclude Iil(i(m iM 12. By the same reasoning we continue

spelling out the A function to arrive at the following: Aij(Bj(m)) = A

inj(Iin(in1 )). Since Iin(Min) - m: = Cj(m), we have A1i(Bj'(m)) -Ain

(Cj(m)). Since AinJ(Cj(m)) = Ij(Cj(m)) m m, we have AiJ(Bj'(m)) - m.
O.E.G. -.

Propepty 2.2. Aii(Bj(m) - m) < m. where D1  Dl ... D(n-

- Dn Dj CP1
j in the data segment hierarchy DSH*, and E a small val-

ue.

Proof. Let mi, Min, ..., mi be defined in the same way as in the

proof of Property 2.1. We have A,'(Bj(m)-e) = A 3 (mi E) =- (,
(in11  - 6)). Now we show that I,1 (i, - e) < mn 2 . Consider the follow- "

ing two cases:

(1) If there exists no t e D1, active at M 12 , then mi = Cil(M1 2 ) Mi.-

Therefore i, 1 (ml - e) = 1i(M 1 2 - e) -< mn2 - M < rn2..

(2) If there exists t e Dil active at M 12, then mi = Ci(Mi2 ) = C(t1 1
0

where I(t 1
° ) < M 1 2 . Therefore Ii 1 (m1 - e)= I1 1 (C(t, 0 )- e) 5

l(t, 1
0 ) < i 2..

.I.
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Therefore we conclude Im 1 l - 6) M i 12 . Let mil' = Ii, (imn - a).

Then mi' < M 12 , and Aid(Bit(m) - e) = AiJ(min , ) Continue the process

of substitution we have AiJ(Bj3 (m) - 6) = AinJ(min') = Ii(min') where m

in' i. But I (min') - Ij(mj - e) = Ij(Cj(m) - e) < m. Therefore Ali

(Bj'(m) - E) <i. M .E...

Property 2.3. AiJ(B 3 '(I(t))) > I(t) where Dj t> Di and t E Di is a

transaction.

Proof. Consider the following two cases:

(1) If Di -> Dj is a critical arc in DSH*, then A1i(Bj'(I(t))) =I(C

j(!(t))). Since all transactions that start at or before I(t)

have committed by the time indicated by Cj (I(t)), one concludes

that Ij(Cj(I(t))) > I(t).

(2) If Di -> ... -> Din -> Dj C DSH', then A1 j(Bj'(I(t))) =I(Ain(B

In1 (Ca(()))) By Property 2.1, we have the above expresssion

z Ij(Cj(I(t))), which by (1) is greater than I(t). Q.E.O.

Now we are ready to prove Thereom 2. Let t2 e Dj and t1 6 Di, and t2

-> t1  due to a contended data element d e Dk. To show that t2 -> tl

implies '2 => tl, we must consider all the possible permutations in the

hierarchical relationship in DSH- among Di,Dj, and Dk. Since at least

one of the transactions t j and t2 must have write accesses to Dk, there-

fore the permutations where Dk is higher than both D, and D, are ruled

out. This leads to four different permutations of Di, D, and Dk where D

, Dj and Dk are distinct. We also must consider cases when the D4, D,
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and Dk are not all distinct. This leads to a total of 6 legitimate

cases where at least two of the data segments are merged. Therefore

there are a total of 10 different relationships among Di, Dj and Dk that

must be examined.

For each case, we must further consider the following three scenarios

that lead to t 2 -> t1%

(1) t2 reads a data element d c Dk written (created) by t1 .

(2) t2 writes (i.e., creates a new version dv of) a data element d e

Dk whose predecessor do was read by tj.

(3) t2 writes (creates a new version dv of) a data element d E Dk

whose predecessor do was written (created) by t1 and the version

created by t2 is read by another transaction.

Now we consider the following 10 cases:

(1) Di t> Dj t> Dk. In this case, obeying HTS leads to the same -

assertion for all three scenarios: B k(I(t 2)) > B~k(I(t 1 )) -

From this and the properties 2.1 - 2.3 we can deduce the follow-

ing: Aj) ((t 2 )) - A31(AkJ(Bjk(I(t 2 )) - E)) = Ak!(Bjk(I(t 2 )) -

E) - Akl(Blk(I(tl)) > 1(tj). Therefore t 2 =>t 1 .

(2) D, t> D = Dk. In this case, obeying HTS leads to the same

assertion for all three scenarios: 1(t2) > Bik(I(tl)). From

this and the properties 2.1 - 2.3 we deduce the following: A.'

(1(t2 )) - Ak'(B (I(tl)) > I(tj). Therefore t 2 => t.
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(3) D, = Dj Dk. In this case, obeying HTS leads to the same

assertion for all three scenarios: Bjk(I(t 2)) > Bk(I(t 1 )).

From this and the properties 2.1 - 2.3 we deduce tie following:

I(t2) > Ak'(B k(I(t 2)) - ) - Aki(B k(I(tl)) > 1(ti). Therefore

t 2 => ti.

(4) Di = D Dk. In this case, obeying HTS leads to the same

assertion for all three scenarios: I(t2) > I(t1 ). Therefore t2

=> t 1 .

(5) Dj 1> Di +> Dk. In this case, obeying HTS leads to the same

assertion for all three scenarios: B k(I(t 2)) > Bik(I(tl)).

From this and the properties 2.1 - 2.3 we deduce the following:

I(t 2) > Aki(Bjk(I(t 2 )) - £)) > AkJ(Blk(I(t ))) = AIJ(Aki(Bik(I(t

1)))) - AJ(I(t)). Therefore t2 => t 1 .

(6) Dj P> Di = Dk. In this case, obeying HTS leads to the same

assertion for all three scenarios: Bk(I(t2)) > 1(t). From

this and the properties 2.1 - 2.3 we deduce the following: I(t2

> AkJ(Bjk(I(t 2)) - e)) > Akj(I(tl)) = Ai(I(ti)). Therefore

t 2 => ti.

(7) D, > t> Dj. In this case, the only possible scenario that

applies is scenario (1). Under this scenario, obeying HTS leads

to the following assertion: A~k(I(t 2)) > Bik(I(tl)). From this

and the properties 2.1 - 2.3 we deduce the following: Aj'(I(t 2

(tAk)(AjI(I(t2)))Z Ak >(t 1 ). Therefore t 2 =>

-104"
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(8) D = ) > Dj. In this case, the only possible scenario that

applies is scenario (1). Under this scenario, obeying HTS leads

to the following assertion: Ajk(I(t 2)) > I(ti). Therefore t2 =>

ti-

(9) Dj t> Dk > D i. In this case, only scenario (2) applies.

There are two sub-cases:

(9.1) d already exists when tj read do. By HTS protocols this means

Bj'(I(t 2)) > Ak(I(tl)). HIowever, given that no two timestamps

are identical and Bji(I(t 2)) is a commit timestamp and Ajk(I(t1

)) is an initiation timestamp, Bjk(I(t 2)) # Ajk(I(t 1)). There-

fore we have Bjl(I(t 2)) > A.k(I(t 1)). From this and the proper-

ties 2.1 - 2.3 we can deduce the following: I(t2) > Aki(Bjk(I(t

2)) - E) > AkJ(Aik(I(tl))) A1j(I(t)). Therefore t2 => ti.

(9.2) d does not exist when tj reads do. Let the time when t2 writes

be denoted as time2 and the time when tl reads be denoted as

timel, then we have the following: Bji(I(t 2 )) > C(t2) > time2 >

timel > I(tj) > Aik(I(tl)). Therefore we obtain Bjl(I(t 2)) > A1

~ (I(ti)). By similar reasoning we conclude that t2 =>

(10) DJ > Dk= Di. In this case, only scenario (2) applies. There

are also two sub-cases:

(10.1) d already exists when tj read d °. By HTS protocols this means

Bj'(I(t 2)) a A k(I(t1 )). By similar reasoning as above we have

B1
1 (I(t2)) > 1(tj). From this and the properties 2.1 - 2.3 we

deduce the following: I(t 2 ) > Akj(Bk(i(t 2 )) - e) > Akj(1(tl))

= AJ1 (1(tl)). Therefore t2 => ti.
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(10.2) d does not exist when t1 reads d0. By similar reasoning as

(9.2) we conclude t2 O> tl. then we have the following: Bj'

(I(t2)) 2! C(t2) > time2 > timel > 1(t1) Z A~ki~t Therefore

we obtain BJ1 (I(t2)) > Aik(I(ti)). By the same reasoning as

above we conclude that t2 => ti. .EO

Theorem 2 concludes that the hierarchical timestamp protocols under

cyclic partitions enforce the partition synchronization rule. This,

combined with the result of Theorem 1, completes the proof of correct- -

ness of the algorithm.
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6.0 SYNCHRONIZING READ-ONLY TRANSACTIONS

What has been discussed is the algorithm for controlling concurrent p

update transactions. Now we turn to the read-only transactions.

For a read-only transaction t that reads from data segments that lie p

on one critical path CP4 J of the DSHa, the protocol that should be

observed is the same as that observed by the update transactions rooted

in a data segment immediately below the lowest data segment on the crit-

ical path CP1
3  in DSH*, namely, the data segment right below Di. (If

there exists no data segments below Di in DSH*, then a fictitious data

segment can be created to 'host' this read-only transaction.) Therefore L--

read-only transactions will have to obey protocol H alone and will not

cause any read timestamp or read lock to be generated. This is graph-

ically presented by transaction t1 in Figure 15. -

What we are concerned with here are those read-only transactions that

read from any combinatior of data segments that do not lie on a critical

* path in the data segment hierarchy, DHS*, as illustrated by transaction

t2  in Figure 15. In general, what we are looking for is a way to prove

the existence of and to derive a consistent database state across all

data segments in a database in which the hierarchical decomposition

approach to concurrency contorl is used. in other words, if a consi.st-
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ent database state can be derived, then it can be read by read-only

transactions without violating serializability. To achieve this, we

first introduce the extended tivity ti.k 6un ction in the following

subsection, and prove certain properties of this function that would

enable us to derive a consistent database state.

6.1 BASIC DEFINITIONS AND PROOF OF PROPERTIES

In the previous section we have introduced the activity link function

which centers around the linkage between transactions rooted in data

segments that are on a critical path in the data segment hierarchy. The

extended function, on the other hand, specifies how transactions rooted

in a data segment are linked to transactions rooted in another data seg-

ment when there is not necessarily any critical path in DSH* that

connects the two. This function is used to provide a way of computing a __._

conetent databa.e 6tate that can be accessed by a read only trans-

action that reads from any combination of data segments in the database.

The extended activity link function is defined by the functions

introduced in the previous chapters, namely, functions A and B. Its

usefulness will be indicated in a lemma that follows. The existence and

derivation of a consistent database state is given in theorem 3, which

makes use of the extended activ-ty link function.
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Definition. An undirected critical path, denoted as ucpiJ, is an

- ordered set of di6tiAC~t indices of data segments in DSH*, such that UCP,

<.i, i, 12, ....vin, J> where for any two indices h, k adjacent in

the set, either DI, -~Dk or Dk -~D, is a crtical arc in DSH*.

It is obvious that for any data segment hierarchy DSH* there exists

one and only one UCP in DSH* between any pair of data segments. While

- the activity link function A is defined for a pair of data segments that

* lie on a critical path, the extended activity link function, using the

concept of UCP, is defined for any pair of data segments.

*Definition. The extended activity link function defined for a pair

of data segments Di and Dj, denoted as EiJ(m), is a function which maps

* a time value m to another such that

M if i"

cela-e(m) if i and Dti Di is a critical arc in DSH*,
* EJ(m)

IoOft(m) if i f and Di s De is a critical arc in DSU.,

Ek 2 (Ei k(M)) otherwise, where <i,k,...,? = UCPI 3 ,

*As an example, suppose D,, Di, Dk and D are in DSH* such that D n --

Dke Dh -> Dk and Dh D,, but D and Dare not related in DSH , as

* shown in Figure 16. Then UCP 1 ' = i,k,h,?> and Eii(m) is evaluated as

follows. Take the first pair of indices <ik> in UCPi and examine the

nrelationship between DI and a. Since Di o Dk therefore Ikol is

-10
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invoked and E1 J(m) is expanded to be Ekj(Ikold(m)) = Ekj(m'). Then

examine the relationship between the next pair of data segments Dk and D

M. Since Dh -> Dk1 therefore Ck la te is applicable and Ekj(m') is

expanded to be EhJ(Cklato(me)) = Eh(m''). Finally, the relationship

between the last pair of data segments on UCPj J is examined and since Dn

-> D4 , therefore IjOld is applicable and Ekj(m'') is equated to I,010

(m''). In sum, EJ(m) is expanded to be IJOIO(Cklate(Ikold(m))). This

is illustrated in Figure 16.

The usefulness of the extended activity link function lies in the

fact that it can be used to compute the components of a time wall.

Intuitively, a .time w for all data segments in the database system is

a set of times such that no direct dependency from the 'older side' of

the wall to the 'newer side' of the wall can occur. A time wall TW(m,s)

is composed of an ordered set of all time values, the i-th component of

which is expressed as Es1(m), where m is a time, D. is a chosen data

segment, and Di is any data segment. The function E has the property

that, given any pair of data segments D, and D,, if t1 E Di and t.

starts before the i-th component of a time wall, and t2 e D3 and t 2

starts after the i-th component of the time wall, then tj cannot direct-

ly depend on t2  This property is formalized in the following lemma

while the concept of a time wall is graphically presented in Figure 17.

Lemma 3.1. Let Dk, D, and Dj be data segments in a DSH* of a data-

base partition, and D, and D1 are on one critical path in DSH-. Then
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for any time value m and t1 f D, t2 E Dj, if I(t 1 ) < Ekl(m) and I(t2)
>

E1(m) then there exists no t1 -> t2 in the transaction dependency graph 4

TG(TU) where the concurrency control algorithm enforces the partition

synchronization rule.

Proof. Let Dkl be the class such that k is the fisrt index in UCPk'

where Dkl and D1, Dj are on one critical path. (k and ki are not neces-

sarily distict.) Then k1 will also be the first such index in UCPk,

and the subset of the ordered set UCPki up to ki and that of UCPk J uO to

ki are equivalent. (This is because between any pair of data segments

there is one and only one UCP.) Consider the following four groups of

cases:

(I) i = j # kl or i = j = k1. In this case, Eki(m) = Eki(m). Since

t1  and t2 are in the same class, by intra-class-synchronization

rule we have I(t1 )< I(t2), which implies that there exists no

ti - t 2.

(2) i = k. # j. Two cases are considered:

(2.1) Di t> D3 . 1(t 2 ) Z Ekj(m) implies that Aj(I(t 2 )) A(Ek

2(m)) = Ajkl(Bklj(Ekkl(m))). From Property 2.1 we have Ak1

(Bkli(Ekkl(m))) - Ejk1 (m) - Ek!(m) > I(tj). Therefore Aj'

(:(t2)) > 1(t1 ), which implies that there exists no t i - t 2 .

(2.2) Dj t> D1. l(tj) < Ek'(m) implies AJ(I(tj)) 5 A,2 (Ek'(m))

= Ek2 (m):- 1(t2). Therefore A1 J(I(t1 )) 5 I(t2), which

implies that there exists no tj - t 2 .

(3) = kl # i. Two cases are considered:

. . . • ." ."



(3.1) Di *> Dj. l(t2) 
> Eki(m) implies that Aj'(I(t 2)) Z Aj'(Ek

3(m)) = Ek'(m)> I(t1 ). Therefore Aj'(I(t 2)) > I(t1 ), which

implies that there exists no t1  t2.

(3.2) Dj t> D i. I(tl) < Ek'(m) implies I(tl) < Eki(m) - e, which

implies A1j(I(t1 )) < AI'(Bji(Ekj(m)) - e). From property 2.2 we

have Aij(BJi(EkJ(m)) - e) < Ekj(m). Since I(t2) 
> Ekj(m),

therefore A1i(I(tl)) < 1(t2), which implies that there exists no
W

tl - t 2.

(4) i 0 j 0 ki. Six cases are considered:

(4.1) Di t> DkI + > Dj. i(t2) t EkJ(m) implies that Aj'(I(t 2)) -"
A3

1(Ek'(m)) = A3
1(Bklj(Ekkl(m))) = Akll(AJ1(Bklij(EkkI

(m)))). By property 2.1, Akl(Ajk (Bk1J(Ekkl(m))) • Ak11(Ek

kl(m)) = Eki(m). Since Eki(m) > I(t1 ), we have Aji(I(t 2)l >

I(t1 ), which implies that there exists no t1 - t2.

(4.2) Dj t> Dk I I> DI. I(t1 ) < Ek'(m) implies I(t1 ) < Eki(M)-

6, which implies A ,J(I(t1 )) < A,1 (Ek'(m) - ) (B

kl(Ek(m)) l) Let m' = Alk(Bk '(Ekkl(m)) - e) By

property 2.2 we have m, Ekkli) hrfr Akl(A k(Bkli
kl M) kl(, "

(Ekk1(m)) - f)) = Ak j(m') < Aklj(Ekkl(m)) = E (m) 5 1(t2).

Therefore A,(I(tj)) -5 1(t2) which implies there exists no

- t 2 .

(4.3) DkI Di > Dj. I(t2) Z Ek-(m) implies Aj'(I(t 2)) >A(Ek.

=(m)) Aj1 (Bi,(Ek1 (m))) t Ek'(m) > I(t1 ). Therefore Aj'

(I(t2)) > I(t), which means that tnere exists no t - t 2 -.
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(4.4) Dj t> D, t> Dk- 1(t1 ) 
< EkI(m) implies Aj(I(tj)) :- AS i

(Ek'(m)) =Aij(Ak 1(Ekkl(m)) = Ak1 j(Ekk (m)) =E, (m) 5 I(t2).

That is, AiJ(I(ti)) 5 I(t2) which means there exists no tj -

t2•

(4.5) DkI > Dj> Di. I(t1 ) < Ek1 (m) implies I(t1 )5 EkI(m) -

e, which means A1j(I(t1 )) -5 Aij(Eki(m) - 6) ACBjCEk

(m)) - ) < Ekj(m) -< I(t 2). That is, Aj(I(t1 )) ' I(t2),

which means that there exists no ti - t2.

(4.6) D i t> Dj> Dk. I(t2) 
> Ekj(m) implies Aji(I(t 2)) Z Aj4

(Ek4 (m)) = Aj4 (AklJ(Ekkl(m)) = Eki(m) > I(t1 ). That is Aj'

(I(t2)) > I(t1 ), which means that there exists no t1 - t2.

For each of the group above we have permutated the level of the dis- -

tinct classes and for a total of 11 cases we have shown that it is

impossible to have tj - t2. Therefore we prove that there exists no t-

- t2-. O.E.D.

The significance of this time wall concept is that if a read-only

transaction reads the latest versions of data granules of data segment

D, which are right before the time indicated by the time wall component

Es'(m) of certain time wall TW(m,s), then it is accessing a consistent

database state and will in no way induce cycles into the transaction

dependency graph. This discussion is formally presented in the follow-

ing theorem.

-116- "- -

• %~~~.-....-.....-.........,........... ..,-...... .......... .......... ..... . .." .



Theorem 3. If the schedule S enforces the PSR on TU, and for every d

E D, that a read-only transaction tR reads, S allows it to read the ver-

sion d° such that

TS(d 0 ) = Max. (TS(dV)) where TS(dv) < Es(m),-

for some time m and some transaction class index s, then TG(S(TU U tR))

has no cycle.

Proof. In order to prove Theorem 3, we first give the following

definitions and a lemma (Lemma 3.2.)

Definition. A consistent transaction set with respect to a schedule

of a set of transactions T, abbreviated as a CS w.r.t. S(T), is a set

of transactions Tcs C T such that if t E Tes and if there exists tj e T

such that t - ... - t1 C TG(S), (i.e., if depends on tj in the transi-

tive closure of -), then t1 E TCS.

Property 3.1. (The Property of a consistent transaction set.) Parti-4
5"

tion Tu into TuI and TU 2 , Then TU is a consistent transaction set w.r.t

S(Tu) iff for any two transactions t 1 ,t 2 , such that t j e TO ' and t2 e

Tu2, there exists no t1 - t2 in the transaction dependency graph TG(S).

Proof. We want to show that the following two parts are true:

(1) If T u l is a CS then there exists no t1 - t 2.

By definition of a CS, if t1 e T' and tj - t2 , then t2 must be

also in Tu, which contradicts the given. Therefore there

exists no t1 -

-117
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(2) If there exists no t1 - t2 for any t1 E TU' and t2 e TU12 , then T

is a CS.

Tul is a CS because no transaction in Tul can have a dependency

in the transitive closure on a transaction which is not in TuI.

Therefore we conclude that this property is true. Q.E.O.

Definition. Given a time value m and a UAati g daa Aegment Vs, a

designated consistent transaction set, denoted as TC3(m,s), is a con-

sistent transaction set such that for all t e Ds, t e TCS(m,s) iff I(t)

< m.

Lemma 3.2. Parition Tu into Tu l and TU2. Then TU is the designated

consistent transaction set TCS(m,s) w.r.t. S(TU), where the schedule S

enforces the PSR, if Tul contains, for all i, all and only transactions

t such that I(t) < EsI(m) where t e Di.

PPoof. construct a time wall TW(m,s). Then by the previous lemma

* (Lemma 3.1) we know that for any j, k, if tj E D, and I(t1 ) <

and t2 E Dk and I(t2) Z Esk(m) then there exists no tI - t2. Therefore

by Property 3.1 above we know that TI is a consistent transaction set

i.f it contains for all i only transactions t such that I(t) < EsI(m)

wnere t E D,. And since EsS(m) = m, we have I(tj) < m if t1 e Ds .

Therefore Tul must be the designated consistent transaction set Tcs
~(m,s). Q.E.O. .
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Corollary. Given a time value m and a starting transaction class Ts

there exists a designated consistent transaction set TCS(m,s).

Theorem 3.

PPoof. Partition Tu into Tul and Tu2 such that for all t E Di, for

all i, t e T"1 iff I(t) < E.I(m). Then it is clear that dependencies

induced by tR must be arcs that go from tR to transactions in TuI, and

arcs from transactions in Tu2 to tR. By Lemma 3.1, there exist no

dependencies from transactions in TU' to those in TU 2. Therefore arcs

introduced by tR will not introduce any cycle into the original TG(S).

Since TG(S) has no cycle, therefore TG(S(Tu U tR)) has no cycle. O.E.D.

In other words, if a read-only transaction reads the latest versions

of data granules of data segment Di which are right before the time

indicated by the time wall component E.1 (m) of certain time wall

TW(m,s), then it is accessing a consistent database state and will not

induce cycles into the transaction dependency graph.

6.2 CONCURRENCY CONTROL PROTOCOL FOR READ-ONLY TRANSACTIONS

Making use of Theorem 3, a read-only transaction t that reads from

• data segments that do not lie on one critical path in DHG should be giv-

en versions that are the latest before certain time wall. However, tc -

compute the time wall the system has to determine the starting data seg-

-



ment D and a starting time value m. While the choice can be arbitrary,

it is theoretically desirable that the following criteria are met:

(±) EsI(m) (for all Di in the DSH*) is computable at I(t), the initi-

ation time of the read-only transaction.

(2) There exists no m' > m such that EI(m') is computable at I(t)

for all Di in the DSH*.

The first criterion stipulates that m should be 6mdU enough so that

all E,'(m) is computable at I(t), therefore t potentially does not have

to wait until a later time to access from certain segment. (If some EsJ

(i) is not computable at I(t), t would have to wait till a later time

when it is computable before accessing data from data segment Dj.) The

second criterion strives to achieve reading of the ne.ae4t po4iZbt data-

base state.

A compromise is struck here in devising our protocol for read-only

transactUon$. First, to save computation time, a new time wall is com-

puted by the system at certain intervals and the new time wall is 're-

leased' to all read-only transactions that start before the next veAJ.on

of the time wall is released by the system. (That is, there is no need

. to compute a time wall for every read-only transaction.) In computing

the next version of the time wall, the system can choose arbitrarily a

starting data segment Ds which is of one of the lowest levels and choose

m to be the initiation time of the oldest active transaction rooted in

Ds. time. If it encounters any ClIat function that it cannot compute,

-12o-
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it waits until it becomes computable. Eventually enough time will

elapse such that E31 (m) becomes computable for all D1
1 s. Then a newly

constructed time wall is released.

Let the release time of a time wall TW(m,s) be denoted as

RT(TW(m,s)). Now we provide the formal definition of the read-only

transaction synchronization protocol.

Concurrency Control Algorithm for Read-Only Transaction

t
For every database read request from a read-only transaction t for a

data granule d, the following protocol is observed:

Protocol R

Let d E D,. The segment controller of Di provides the version d0 of d

such that

TS(dO) = Max(TS(dv)) for all v such that

TS(dv) < EI(m)

where RT(TW(m,s)) = Max(RT(TW)) for all TW such that RT(TW) < I(t).
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7.0 IMPLEMENTATION OF THE HTS CONCURRENCY CONTROL ALGORITHM

7.1 INTRODUCTION AND SUMMARY OF RESULTS.

In this chapter, an implementation of the hierarchical decomposition

approach to concurrency control is described. Through this description,

the practicality of the proposed algorithm is demonstrated. In our

design, we strive to achieve the maximum parallelism at the system

level, breaking down the tasks to be performed on the system-level

resources into as many parallel units as possible. Techniques described

here that pertain to implementation of multi-version databases are also

applicable to implementing the conventional multi-version timestamp

algorithm. We will also point out the difference in implementation

between the HTS concurrency control algorithm and the conventional

multi-version timestamp algorithm.

There are two major issues involved in the implementation of the HTS

concurrency control algorithm. The first issue is the maintenance of a

multi-version database. This is not an issue exclusive to the HTS con-

currency control algorithm, but also shared by the conventional MVTS

algorithm. It includes problems of how the versions of a data element

are to be created, how they are stored and controlled to facilitate rap-

id accesses, and how they are destroyed to make space for future
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versions (i.e., garbage collection). In resolving this issue, an imple-
I

mentation is designed which allows the garbage collection process to

operate in parallel with activities that create and access the

multi-version database. In addition, we have identified the operations

to be performed against a multi-version database using conventional MVTS

algorithm to be of two types: ATOMIC COMMIT and TIMESTAMPEDREAD. We

show that the result of using the HTS timestamp algorithm is to allow a
I

third type of operations, called the NOTRACEREAD operations, to

replace a certain number of the TIMESTAMPEDREAD operations. We will in

our description of the implementation demonstrate the fact that the

NOTRACEREAD operation is allowed to proceed without ever having to be

blocked, while the TIMESTAMPED READ operation still faces the danger of

being blocked due to contention for system-level resources. This result

serves to further substantiate the argument that leaving read timestamps

is a relatively expensive operation, in addition to its potential of

causing more transaction aborts. -

The second issue involves the mechanisms of implementing Protocol L

and Protocol H. Recall that in order to use Protocol H to access a data

element in a higher data segment, a read time ceiling, computed by eval-

uating an A function, must be availalDe. On the other hand, in using

protocol L to access a data element in a lower data segment, a timestamp

for accessing that data segment wbich is different from the trans-

aczion's own initiation timestamp, is used to synchronize such accesses,

and. the use of which will involve certain constraints to be enforced.

[[ -123- [
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-Accomplishing these tasks requires maintaining additional information.

How this additional information is created, stored, accessed and

destroyed is the main subject in discussing this second issue. In sum,

an implementation is identified which enables a rapid computation of the

A function and does not require the computation process ever to be

blocked due to concurrent accesses to the required information. This

feature, along with the fact that multiple uses of the Protocol H by a

single transaction to access data elements in the same higher data seg-

ment would require the computation of the A function to be performed

only once, makes it possible to efficiently implement Protocol H.

The organization of this chapter is as follows. Section 2 provides

an overview of the tasks to be performed by the HTS concurrency control

mechanism. This overview serves to identify the various operations that

will be applied to the multi-version database and other relevant infor-

mation. Section 3 describes the implementation of the multi-version

database and how it is used to support concurrent application of the

three types of database operations: ATOMICCOMMIT, TIMESTAMPED READ and

NOTRACEREAD. It also describes mechanisms for garbage collection.

Section 4 describes the implementation of the transaction history infor-

mation that is required to facilitate the evaluation of the A function

and to enforce constraints necessitated by the psudo evaluation of the B

function.
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7.2 OVERVIEW OF TASKS OF THE HTS CONCURRENCY CONTROL MECHANISM

In this overview, we will describe the implementation of the HTS con-

currency control mechanism from three different angles: (1) The tasks of

the mechanism as seen by a transaction (i.e., the interface of the con-

currency control facility to a transaction,) (2) The modules of the con-

currency control mechanism, and (3) The data (system-level resources or

database data) to be accessed by these modules. This description serves

to provide a perspective on issues involved in implementing the algo-

rithm and motivates the detail description in the subsequent sections.

7.2.1 INTERFACE OF THE CONCURRENCY CONTROL FAC.LITY TO TRANSACTIONS

From the point of view of a transaction, interactions with the con-

currency control facility take place at three points: initiation, read-

ing database data, and finishing. This is shown in Figure 18. When a

transaction is initiated, INITIATION must be called to obtain an initi-

ation timestamp for the transaction. During the execution of the trans-

action, whenever the transaction requests to read a data element in the

database, the read request must be handled through a READ call to the

concurrency control facility. However, since every uncommitted trans-

action is subject to the possibility of user cancellation and system

abort, when the transaction performs a write to the database before it

is finished, it can not directly write into the database, but should

write into its own work space. This is a standard technique used to
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prevent the system from cascading the effect of the transaction to other

transactions before it is committed. When a transaction is finished

processing, its actual commit or abort is then handled by a FINISH call

to the concurrency control facility, which validates all the writes this

transaction has performed by comparing the transaction's timestamps with

timestamps of data elements in the database. If the transaction passes

the validation phase, it is then committed, and all the writes will be
A

performed in the database. Otherwise it is aborted and restarted.

Note that whether these 'calls' are done through message passing or

subroutine calls is not relevant for the purpose of our current dis-

cussion. We assume that the concurrency control facility is capable of

being executed by multiple processes, and the need for mutual exclusion .

when multiple processes are in session will be handled by accesses to

system-level semaphores or locks when it arises. Therefore whether the

facility is executed by the processes that also execute the transactions

or it is executed only by dedicated processes does not alter the cor-

rectness of its execution. The choice would depend strictly on the

nature of the processing environment.

Note also that we do not attempt to address separately the issue of

crash recovery. Crash recovery can be handled in the same way as it is

handled in other concurrency control methods. if the system crashes

during execution of a transaction, tnat transaction is restarted when

the system recovers without the database being contaminated. To handle
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the problem of system crashes during the commit phase of a transaction,

one may resort to the standard technique of two-phase commit <'Gray78,

Chan82b>. In essence, two-phase commit requires that the commit phase

of a transaction be decomposed into two parts: pre-commit and

post-commit. During pre-commit, the writes performed by the transaction

are forced to a permanent storage (e.g., a log disk). If the system

crashes during pre-commit, the transaction is considered uncommitted and

therefore restarted when the system recovers. After pre-commit is com-

pleted, the transaction is considered committed and undergoes the

post-commit phase during which its writes are actually performed in the

database. If the system crashes during the post-commit phase of a

transaction, the transaction is recovered when the system recovers by

performing writes (i.e., redo) into the database based on the log.

Since implementation of the HTS concurrency control algorithm does not

preclude the use of two-phase commit (i.e, pre-commit can be easily

integrated into the validation phase), crash recovery is not specially

discussed.

7.2.2 MODULES OF THE CONCURRENCY CONTROL FACILITY

We will now provide an overview of the modules to be executed within

each of the three different tasks of the concurrency control facility.

7.2.2.1 INITIATION
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As shown in Figure 19, INITIATION is fairly simple. It merely reads

the timer and returns a value as the assigned timestamp for the trans-

action. It is assumed that no two readings of the timer will result in

the same time value. In addition, INITIATION must also record initi-

ation of new transactions in a transaction history table, which will be

used by modules that evaluate the A function.

7.2.2.2 READ

In the conventional MVTS algorithm, the READ call to the cc (concur-

rency control) facility will result in a TIMESTAMPED READ operation.

This operation is passed with the timestamp of the transaction and an

identifier of the data element to be read (e.g., a logical page id), and

is expected to return the desired version, or the (virtual) address of -

the physical page that contains the desired version. TIMESTAMPEDREAD

performs the following tasks:

(1) Decide which version of the data element is right before the

timestanp of the transaction;

(2) Leave the timestamp of the transaction with this version;

(3) Return (the address of) this desired version.

In the HTS timestamp algorithm, READ of the CC facility will first

have to determine whether the request is a read to the root data segment

of the transaction, to a higher data segment, or to a lower data

segment. As shown in Figure 20, three different modules are defined to
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handle these three cases. READ ROOT implements the read access of Pro-

tocol E, which simply invokes TIMESTAXPED READ with the transaction

timestamp and the data id. READ HIGH implements the read access part of

Protocol H. READ HIGH contains a sub-module, COMPUTE-RTC, which evalu-

ates the A function given the timestamp of the transaction and the iden-

tifiers of the root data segment and the higher data segment being

accessed. (RTC stands for read time ceiling.) Once the result of the

evaluation is available, READHIGH invokes NOTRACE READ operation,

passing to it the result of the evaluation as the read time ceiling, and

the data id. NOTRACE_READ performs the following tasks:

(1) Decide which version of the data element is right before the read

time ceiling;

(2) Return (the address of) the desired version.

Note that the difference between the TIMESTAMPED READ operation and

the NO TRACE READ operation is that the latter does not have to leave a

read timestamp with the version of the data element being accessed.

The third module, READ-LOW, handles the read access part of Protocol

it contains a sub-module REQUESTLTS which provides timestamps that

accesses to lower data segments should use for synchron4zation. (LTS

stands for lower timestamp.) This sub-module essentially 'guesses' the

value of the B function without actually evaluating it, and maintains

constraints to be enforced in order to validate its guesses. (Refer to

section 5.2 for details.) The value provided by REQUESTLTS will be
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used as the timestamp value to be passed to TIMESTAMPED READ, an opera-

tion also shared by the READROOT module.

As also shown in Figure 20, three types of data are being maintained

and accessed by the modules implementing READ. The transaction history

* table is read by COMPUTE RTC to evaluate the A function. The

pseudo-transaction table is updated by REQUESTLTS to record constraints

to be enforced as a result of guessing at the values of the B function.

This table is also read by COMPUTE RTC. Finally, the multi-version

database is consulted by both TIMESTAMPEDREAD and NOTRACEREAD to

determine the correct version to be read and the virtual address of that

version.

7.2.2.3 FINISH

The tasks that the HTS algorithm performs when a transaction is fin-

- ished processing are very similar to those performed by the conventional

," MVTS algorithm. As shown in Figure 21, FINISH in essence implements the

operation ATOMICCOMMIT. ATOMIC-COMMIT consists of two stages. At the

first stage, the module VALIDATION is invoked which, for every data ele-

ment that the transaction has written, checks to see if the version to

be created by this transaction has been invalidated by a rrid timestamp

on the version immediately previous to the version to be created. This

-. validation process will result in the transaction being considered

either aborted or committed. In the former case, the second stage of
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ATOMIC-COMMIT will invoke the module ABORT to cause the writes performed

by the transaction to be discarded and the transaction restarted. In

the latter case, it will invoke COMMIT to cause new versions to be actu-

ally created in the multi-version database. ATOMIC COMMIT is an opera-

tion that has to be accomplished atomically, i.e., it cannot allow

writes that have been validated to be invalidated before the operation

is finished.

An additional module executed by FINISH which is unique to the HTS

algorithm is the COMMITTIMESTAMPING module. This module assigns a com-

mit timestamp to the committed transaction and records this information

in the transaction history table.

As also shown in Figure 21, the three kinds of data accessed by READ

are also used in FINISH. Transaction history data is updated by

COMMIT TIMESTAMPING module to record commit times of transactions.

Pseudo-transaction table is consulted by VALIDATION at the end of the

validation phase tc make sure that the transaction has not been in

progress for too long so as to violate constraints posed by pseudo

transactions. And finally the multi-version database is used by all

three modules within ATOMIC COMMIT.

7.2.3 SHARED DATA IN THE CONCURRENCY CONTROL FACILITY
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.7.7

Many modules of the above three components of the concurrency control

facility, INITIATION, READ and FINISH, share accesses to the three types

of data relevant to the concurrency control facility. In the current

sub-section, we will analyze potential concurrent accesses to the shared

data resources. This analysis is essential to designing the data struc-

tures and the access procedures to these data structures so as to allow

*for the maximum level of concurrency within the concurrency control

facility.

From a theoretical point of view, the three tasks of the concurrency

control algorithm, INITIATION, READ, and FINISH (i.e., writes) are all

* atomic tasks. By an atomic task we mean that the correctness of the

algorithm relies on the expectation that the (sub-)process that executes

the task is not interleaved with any other process. However, since each

of these tasks in reality will involve many instructions and execution

* steps that are potentially lengthy, enforcing atomicity of these tasks

- by allowing the concurrency control facility to execute one task at a

,- time would inevitably cause the facility to become a bottleneck. There-

* fore it is important that these tasks be analyzed and their semantics be

understood so that a design can be achieved that allows as many concur-

- rent tasks to proceed as possible. This concept of emulating the effect

of atomic execution of tasks while allowing multiple tasks to proceed at

the same time is analoguous to emulating the effect of atomic execution

of transactions while allowing multiple transactions to proceed at the

same time. The latter is achieved by the concurrency control facility

- 36---
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of a DBMS, while the former is to be achieved through a careful design

of the facility itself.

7.2.3.1 DESIGNING SYSTEM MODULES TO MAXIMIZE CONCURRENCY - A METHODOL-

OGY

The methodology that we use to achieve a design of the data struc-

tures and access procedures that allows the maximum level of concurrency

within the concurrency control facility is as follows.

(1) Obtain a list of the types of atomic tasks that will have to be

performed against shared data. Fcr each of these types of tasks

analyze the semantics of the tasks and embark on an attempt to

break the tasks down into work units that must, based on the

semantics of the tasks, be executed atomically. These work

units, referred to as atoic WoPk Units, may be organized in a

hierarchical fashion, in the sense that one atomic work unit may -

further contain other atomic work units as atomic sub-units.

The criterion for determining whether a work unit is atomic is

whether the resources read or written by the work unit can be

released when the unit is finished. Therefore if an atomic unit

contains other atomic work units as sub-units, then the

resources obtained and used by the atomic sub-units may be

released when the sub-units are finished, while the resources

obtained and used by the parent atomic unit can not be released

until the parent unit is finished.

-137-

............. . ~. .... ....

• %,- -. .•.- %. ' % %,' ."o" "..".- %q %'. % . ." .. --- " . . " "%." "- "..'". " ".".• ..



(2) Construct a data-operation matrix where on one dimension the

shared data sets are listed and on the other dimension the atom-

ic work units are listed. For each cell in the matrix, the

operation that the atomic unit will perform on the data set is

listed. The operations could be 'read', 'write' or 'read and

write'. The matrix is used to facilitate conflict analysis.

(3) Conduct conflict analysis for each pair of atomic work units to

identify potential conflicting atomic work units. Two atomic

work units conflict if the intersection of the data sets they

access is not empty and at least one of the units would have to

perform a write on one of the data sets in the intersection set.

The result of conflict analysis is captured in a conflict matrix

where each of the dimensions consists of all the atomic work

units.

(4) For each pair of conflicting atomic work units, examine the

nature of conflict and identify implementation methods that will

handle the conflict efficiently.

Three methods for handling conflicts are identified and listed below:

(1) Serialization: Allow only one of the conflicting pair of atomic

work units to proceed at any time. This can be achieved through

the use of a single dedicated process to handle both types of

atomic work units. This method is effective when the atomic

work units involved are very short.
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(2) Mutual exclusion on selected granules of data sets: Allow multi-

ple work units to proceed at the same time but serialize those

that are contending for the same data granules. This is

achieved by associating with each granule of data in the data

set a semaphore, or a lock. The lock is obtained when the data

granule is to be operated on and is released when the atomic

unit is finished. This method is more expensive than serializa-

tion because it involves overhead of setting, releasing, testing

for locks, and blocking. However, it allows a higher level of

concurrency.

(3) Semantic analysis for read-write conflict: For those conflicts

in which one atomic unit only needs to read the data set, seman-

tic analysis may be combined with careful implementation to

enforce that no writes onto the granules will (semantically)

invalidate a previous read of the granules by the read-only

atomic unit still in progress. This method, if applicable,

eliminates the conflict without incurring the overhead of block-

ing and locking.

7.2.3.2 APPLYING THE METHODOLOGY TO DESIGNING CONCURRENCY CONTROL

FACILITY

S I

We will apply the above methodology to the implementation of the HTS

control algorithm. The atomic work unit hierarchy, data-operation

matrix and the conflict matrix are srown in Figure 22, Figure 23(a) and
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Figure 23(b). Analying the conflict matrix leads to the following

design decisions:

(I) We would like to have multiple NO TRACE READ's to proceed without

ever having to be blocked or to incur locking overhead. Since

its conflict with ATOMIC COMMIT and TIMESTAMPEDREAD is of the

read-write type, method (3) listed above is applicable. We will

identify a design of the multi-version data base and a procedure

for accessing this data set by all three types of atomic work

units that would achieve this goal.

(2) We would like to have multiple COMPUTE RTC's to proceed without

ever having to be blocked or to incur locking overhead. Since

its conflict with REQUEST LTS, INITIATION and

COMMITTIMESTAMPING is of the read-write type, method (3) listed

above is again applicable. A design of the transaction history

table and the pseudo-transaction table and access procedures to

these data sets is identified to achieve this goal.

(3) Since it is believed that INITIATION and COMMIT TIMESTAMPING are

short atomic units, we will use method (1) above to reconcile

their conflicts.

(4) All the other conflicts are to be resolved through system-level

locks. These locks will be integrated in the design of these

data sets.

7.2.4 SUMMARY
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In this section we have provided an overview of the tasks of the con-

currency control facility that implement the HTS algorithm. The over-

view focuses on the issue of how to design the implementation in a way

so as to maximize concurrency within the facility. A methodology for

analyzing the tasks of the facility, which is applicable to the imple-

mentation of other facilities in a DBMS or an operating system, is

presented and applied to the current problem. Conclusions are drawn to

guide the design that are to be presented in the subsequent sections.

7.3 IMPLEMENTATION OF THE MULTI-VERSION DATABASE

7.3.1 BASIC CONCEPTS

In this section we describe the techniques for implementing the

multiv-version database to be accessed by the three major atomic work

units ATOMIC COMMIT, TIMESTAPMED READ and NO TRACE READ of the concur-

rency control facility. (Refer to the conflict matrix shown in Figure 23

on page 141.)

We assume that all the data elements in the database that the proc-

esses outside of the concurrency control facility may issue reads and

writes to and that are target for control by the CC facility are

fixed-lengt.h 70giCa7 pageS. This assumption, however, does not comDro-

mise the generality of the results in our current design. In fact, any
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uni~t of data objects, such as tuples or records of relations or files,

can be used as the units of data elements on whose behalf multiple ver-

sions are to be kept, so long as their identities can be represented and

mapped easily onto a storage unit. (Examples of storage units are virtu-

al addresses and physical pages.)

* A logical page is identified by a unique logical page id. Given a

database system, a fixed number of logical pages are allocated. All

these pages are assumed to contain some information which may be user

data, system data or simply information that indicates that the page is

available for storing new information. The semantics of the content of

the logical pages are of no concern to the concurrency control facility.

* The concurrency control facility maintains multiple versions of these

logical pages. However, the fact that multiple versions exist for each

logical page is transparent to all processes outside of the concurrency

control facility. Within thle CC facility, versions of logical pages are

assigned to physical pages, each of which corresponds to a virtual memo-

ry page and is identified by the virtual memory address.

7.3.2 STRATEGIES FOR IMPLEMENTING MULTIPLE VERSIONS

'The analysis presented in the previous section shows that within the

CC facility two major types of accesses to the MVDB are the following:
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(i) Given a logical page id, find the physical page that contains the

most recent version of the logical page.

(2) Given a logical page id and a time ceiling, find the physical

page that contains the most recent version of the logical page

prior to the given time ceiling.

The MVDB must be implemented to facilitate fast responses to these

types of accesses. To accomplish the first, we will allow direct

accesses to the most recent version of a logical page. To accomplish

the second, we will allow the versions of a logical page be chained

together in a reversed chronological order so that a request to a ver-

sion subject to some time ceiling can be achieved through a direct

access to the most recent version and then traversing the chain until a

version with a version timestamp smaller than the given time ceiling is

found. Therefore the guidelines for the implementation are the follow-

ing:

(1) Direct access to the most recent version of a logical page.

(2) Versions of a logical page are to be chained in a reversed chron-

ological order.

There are two strategies for implementing direct accesses to the most

recent versions. The first one is physical clustering, namely, reserv-

ing a continuous block of physical pages to store the most recent ver-

sions of all tne log:cal pages so that given a logical page id the

virtual address of the physical page that stores the most recent version
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of that logical page can be directly computed from that logical page id.

The second one is through the use of a scatter table. Given a logical

page id, the address of the entry that corresponds to the logical page

in the scatter table is directly computable from the logical page id,

while the virtual address of the physical page that contains that ver-

sion is stored in the scatter table entry. The physical clustering

method is shown in Figure 24, and the scatter table method is shown in

Figure 25.

The advantages and disadvantages of using the scatter table method

versus the physical clustering method are listed below:

Advantages:

(1) Avoid the need of copying versions multiple times: The need for

atomic commit does not allow new versions of logical pages cre-

ated by a transaction (i.e., writes on these logical pages by

that transaction) to be made known to the database until it is

decided that the transaction will commit. This amounts to

requiring that new versions be first created in a region of

physical pages assigned to be the transaction's own work space.

Under this circumstance, if physical clustering is used to

implement the most recent versions, then most of the new ver-

sion* will have to be written twice every time it is created:

once in the p7ivate work space of the transaction that creates

it and once in the most recent versions' cluster region. More-

over, when a version is superceded by a more recent version,
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has to be forced out of the most recent versions' cluster region

and be copied into an area for older versions. However, if the

scatter table method is used, the physical pages in the private

work space where the new versions were first created can be

directly pointed to by the scatter table when the transaction

commits, thereby avoiding the overhead of writing the new ver-

sions twice. Similar arguments persist when a version is super-

ceded and must be forced out of the most recent versions'

region.

(2) Higher level of spatial locality when traversing the version

chain: Since scatter table entries are likely to be much small-

er in size than the logical or physical pages, less space (i.e.,

less number of physical pages) is required to complete the paths

of version chains. Traversing a version chain to find a desired

version can be accomplished by traversing scatter table entries

rather than by actually visiting individual physical pages that

store the intermediate versions of the logical page. Spatial

locality is therefore likely to be enhanced during activities cf

version chain traversals. (Higher spatial locality is desirable

because it potentially enhances the-performance of the virtual

storage system.)

Disadvantages:

(1) Avoid the overhad of maintaining and backing up the scatter

table.
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(2) Higher level of spatial locality in the most recent versions'

region: Since the most recent versions are more likcely to be

the desired versions that satisfy most access requests, and

assuming that spatial locality exists at the logical page level

(i.e., contiguous logical pages have a higher probability of

being accessed together,) it is expected that spatial locality

at the physical page level can be enhanced if the most recent

versions are also physically clustered.

In our current design, we have chosen to use the scatter table tech-

* nique for implementation. The remainder of this section describes how

* operations on the multi-version database are accomplished in this

design. However, this Choice does not compromise the generality of the

* main results we will obtain for the implementation. A design that has

* similar attributes in conflict handling but uses the physical clustering

technique can be analoguously obtained.

* 7.3.3 DATA STRUCTURES

* The data structure of the scatter table is shown in Figure 26. The

table is composed of two parts. The first part, called the most recent

version region, stores the entries for the most recent versions. The

second part, called the old version region, stores the entries for the

older versions. The number of entries in the first part is determined

by the number of logical pages allocated in the system, while in the
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second it is a function of what is considered adequate for holding all

the older versions that might still be accessed at any time.

For the purpose of garbage collection, the old version region is

arranged as a ring buffer, with two pointers FREE SPACE BEGIN and

FREESPACE_END pointing to the beginning of the free entries and the end

of the free entries. When FREE SPACE BEGIN catches up with

FREESPACEEND, the scatter table for the older versions is full and the

system must wait till garbage collection to advance the FREE SPACE END

pointer before it can further allow most recent versions to be super-

ceded. We will design the garbage collection process to be a parallel

process that is constantly Checking to get rid of stale versions.

As shown in Figure 26, each scatter table entry contains (I) the ver-

sion timestamp (VTS), i.e., the timestamp used by the transaction to

create this version, (2) the read timestamp (RTS), i.e., the largest

timestamp of the transactions that read this version, (3) the pointer to

" the scatter table entry of the immediately previous version (PPT), and

(4) the virtual address of the physical page that stores this version

(VA). For an entry in the old version region of the scatter table, the

logical page id whose old version the entry is corresponding to is also

stored with the entry.

7.3.4 OFERATIONS AND SYNCHRONIZATION
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We will now analyze the operations to be performed on the scatter

table by the three atomic work units: ATOMICCOMMIT, TIMESTAMPEDREAD

and NOTRACEREAD. The purpose is to identify the most efficient way of

controlling, concurrent accesses to the scatter table while maintaining

the correctness of each operation.

7.3.4.1 ATOMIC COMMIT

The task of ATOMICCOMMIT for a transaction with a timestamp TS is as

follows. (We assume that, for practicality, only the most recent ver-

sions can be superceded by a new version.) For every new version to be

created, the scatter table entry for the most recent version is located

and the RTS field of that entry is compared with TS and the entry is

validated if RTS 5 TS and VTS 5 TS. If any entry cannot be validated,

the transaction is aborted. If all entries are validated, then the

transaction commits. When the transaction commits, for every new ver-

sion it creates, a new entry in the scatter table must be created and

placed in the proper location in the version chain. This can be accom-

plished by, for each new version to be created, obtaining a free entry

space in the Old Version Region and copying the entry for the immediate-

ly previous version to tne free entry space. The entry for the new

version can then be placed in the entry space originally occupied by the

entry for the immediately previous version. This process of inserting

entries for new versions in the scatter table is shown in Figure 27.
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The conflict among ATOMICCOMMIT processes arise from version chain

insertions. if two ATOMIC COMMIT processes are run in parallel and both

of them need to insert a new version of the same logical page then use

of the above insertion procedure will lead to inconsistency. The incon-

sistency is caused by the invalidation of a validated entry by concur-

rent processes. To prevent this situation, a lock bit, called

ENTRY-LOCK, is associated with each entry which must be acquired and

locked before an entry is examined for validation. The lock will be

held until the transaction is commited and the insertion procedure for

that logical page is finished, or until the transaction aborts.

7.3.4.2 TIMESTAMPED READ

The task for TIMESTAMPEDREAD is simpler. Given a read request to a

logical page and a timestamp ceiling TS, the version chain in the scat-

ter table for that logical page is traversed until the entry for the

version %ith a version timestamp 5 TS is located. The RTS field of that

entry is then updated to be the maximum of its original value and TS.

The address (i.e., VA of the entry) is then returned.

The conflict between TIMESTAMPED READ and ATOMIC COMMIT lies with

accesses to the RTS field of an entry. Updating RTS of an entry already

validated by a concurrent ATOMIC COMMIT process could result in the

invalidation of the entry for the ATOMIC COMMIT process. To prevent

such interference, TIMESTAMPED READ is required to acquire ENTRY LOCK

.,.... .. .. .... ..... .... .. .............. .......... ....... ,.....,...,.



associated with an entry before it reads it, and will immediately

release it after it is determined that this is not the version needed

or, if it is, after RTS is updated.

The conflict among TIMESTAMPED READ's also arises from conflicting

accesses to the RTS field, and therefore can be handled by the above

ENTRY LOCK protocol.

7.3.4.3 NOTRACEREAD

The task of NO TRACEREAD is very similar to that of

TIMESTAMPED READ. The only difference is that the former does not

require the update of the RTS field of the entry for the version to be

read. Since the logic of NO TRACE READ is not concerned with RTS, the

only conflict is between NO TRACE READ and ATOMIC COMMIT when the latter

inserts entries in the version chain that the former is following. How-

ever, the following two facts enable NO TRACE READ processes to proceed

without ever having to be concerned with concurrent ATOMICCOMMIT proc-

esses that operate on the version chain of the same logical page:

(I) If entry el is locked by a concurrent ATOMICCOMMIT process, then

the version to be inserted by that process cannot be the target

of any concurrent NO TRACE READ process. This is because the

time ceiling that a NO TRACE READ process uses is always smaller

than the timestamps of any active transactions that might write

on that logical page. (Refer to the definition of Protocol H.)
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(2) Reading a locked entry el by a NOTRACEREAD process will not put

the NOTRACEREAD process in danger of reading a distorted ver-

sion chain which may lead to inconsistency. This can be read

from Figure 27 on page 154 which shows the possible states that

a NO TRACE READ may encounter when retrieving a version of a

data element while a concurrent process is inserting a new ver-

sion. It is shown that NO TRACE READ would not be misled even

if it reads the intermediate state produced by the concurrent

insertion process.

Therefore it is concluded that a NO TRACE READ process can proceed

without ever interfering with any other concurrent process, and there-

fore never has to wait or obey other synchronization protocol.

7.3.5 GARBAGE COLLECTION

The garbage collection process is responsible for deleting stale ver-

, sions and advancing the FREE SPACE END pointer of the scatter table.

Also, whenever an old version is deleted, the physical page that stores

that old version is returned to the free page list available for allo-

cating to transactions as work space. What constitute stale versions

and how the garbage collection process operates on the scatter table are

* the subliects of the current discussion.
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To determine old versions that are safe for deletion, the garbage

collection process can make use of the time wall concept related to the

Read-Only Protocol. Recall that to enable a read-only transaction to

access any data segment without having to leave timestamps, be delayed

or be aborted, a time wall, which is a set of times where each time is

associated with a data segment, is computed and the read-orly trans-

action is allowed to access data versions that are the most recent

versions immediately prior to the times in the time wall. For example,

to access data element d in a data segment Di, and given that the time

associated with Di in the current time wall is time1 , the version of d

which is the most recent version before time1 is granted for access by

the transaction.

It can be shown that the time wall, computed periodically, estab-

lishes a set of times that can be used to determine which older versions

will never be accessed by active or future transactions, and therefore

can be garbage collected. We will first re-state the following fact:

Fact: Given a time wall TW computed and released at time O by the pro-

cedure described in Section 6.2, and let TW = <time,, time 2,

•, time,-, where time1 is the time component in TW associated

with data segment D,, then no update transactions rooted in the .-- -

data segment D,, for i = 1 to n, that started before time, are

still active at time time o.
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The above statement confirms the fact that the version of a data ele-

ment in data segment Di that has a successor version which is prior to

the time wall component time1 in the currerly applicalbe time wall will

never be requested by any active and future transaction. Therefore this

version is a stale version and can be garbage collected.

Armed with the above fact, the garbage collection process is a system

process which is invoked whenver a new time wall is released. For every

data element in a data segment Di, the process traverses the version

chain of that data element until a version is found which has a version

timestamp prior to time1 in the time wall. Then it deletes all versions

of that data element prior to this version, if there is any.

To enable the garbage collection to be more efficient, the logical

page id field of the scatter table entries in the Old Version Region of

the the scatter table can be used to select the logical pages whose ver-

sion chains are to be examined. The garbage collection process can look

into only scatter table entries in the Old Versions Region and for each

entry follow the version chain to see if there exists a successor ver-

sion which is prior to the specified time value in the time wall. Given . -

the fact that at any given time most data elements would probably have " "

only one version in the database, selectively chosing version chains to

be examined would greatly reduce the work of the garbage collection

process by eliminating the need for it to look at all the data elements,

but only those with more than one versions.

• . ." . . " .
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The Garbage Collection process would start at the entry pointed to by

FREE ENTRY END + 1 in the Old Version Region of the scatter table and

examine that entry according to the procedure described in the previous

paragraph. Once it is determined that the entry can be garbage col-

lected, the entry is marked free (e.g., setting a bit in the logical

page id field) and FREEENTRYEND is incremented. This proceeds until

either an entry is found that is not eligible for being garbage col-

lected, or when FREEENTRYEND +1 is equated with FREEENTRYBEGIN or it

is already marked free. The Garbage Collection process can then be dor-

mant till the next time wall is released.

Assuming that the operations of incrementing FREEENTRY END and

FREE ENTRY BEGIN are executed atomically, the garbage collection process

will never interfere adversely with any other concurrent processes.

While it is in no conflict at all with TIMESTAMPED READ and

NOTRACEREAD, it can also be shown tnat it does not have to interfere

with concurrent insertion operations by ATOMIC COMMIT. We give the fol-

lowing facts to substantiate this statement:

(1) ATOMIC COMMIT will never cause a version chain that the Garbage

Collection process must follow to be distorted. This has been

shown in discussing NOTRACEREAD operations.

(2) Garbage Collection will never garbage collect an entry that an

ATOMIC COMMIT process has just obtained from the free entry list

(therefore in the domain of operation of the garbage collection
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process) but has not written the new data in. This is because

such entries would have been marked free.

7.3.6 SUMMARY OF THE MULTI-VERSION DATABASE IMPLEMENTATION

To summarize our implementation of the Multi-versin Database in the

concurrency control facility, we emphasize that while ATOMICCOMMIT and

TIMESTAMPED READ must be synchronized by the ENTRYLOCK, NOTRACEREAD

and GARBAGECOLLECTION do not have to use any lock or otherwise obey

synchronization protocols, and therefore can always proceed without

being blocked or incurring overhead for other processes.

*7.4 IMPLEMENTING FUNCTIONS FOR MANAGING AND COMPUTING TIMESTAMPS

7.4.1 INTRODUCTION AND OVERVIEW

In this section we describe how timestamps are assigned or computed.

Recall that in order to make use of Protocol H or Protocol L for access-

ing data elements outside of a transaction's own root data segment, it

is necessary to compute an access timestamp which is different from the

transaction's own initiation timestamp. Computation of these timestamps

results in the need to maintain information on transaction history as

S.well as pseudo-transaction constraints. Maintenance of these informa-

tion is also the subject of the current section.
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As shown in Figure 23 cn page 141, four zasks (atomic work units) are

related to timestamp manaqement: INITIATION, COMMIT TIMESTAMPING, COM-

PUTE RTC and REQUESTLTS. The first three share accesses to the Trans-

action Table, while the latter two share accesses to the

Pseudo-transaction Table. Both tables are maintained strictly for the

purpose of evaluating the A function to provide time ceilings used in

the H protocol. We will therefore first describe in the following

sub-section the algorithm of COMPUTERTC that evaluates the A function.

* The need for a fast evaluation algorithm leads to the requirement that

the above information be presented to the COMPUTERTC module in a struc- -

ture that is most suitable for the algorithm and the structure can be

accessed by COMPUTE RTC without being interfered by concurrent updates

to the structure. A design that accomplishes this goal, and involves

new tables compiled from the Transaction Table and the

Pseudo-transaction Table for access by COMPUTE RTC, is described in the

final sub-section.

7.4.2 EVALUATT:NG THE 'A' FUNCT-ION

When a transaction rooted in data segment D, needs to access data

elements in a higher data segment Dj, it uses the H protocol and

accesses versions of these data elements in Dj that are immediately pre-

vious to a read time ceiling (RTC) computed by evaluating the function

AJ(TS), where TS is the initiatlon timestamp of the transaction. COM-

PUTERTC is a module which, when invoked, is given the source data
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segment (e.g., Di), the target data segment (e.g., rj) and the trans-

action timestamp (e.g., TS), and will return the value of Aj(TS).

There are two strategies concerning when to evaluate the A function.

One is the static strategy, which computes at the initiation stage of a

transaction all the read time ceilings the transaction will potentially

use, and stores these values in the transaction header contained in the

transaction's work space. The other is the dynamic strategy, which com-

putes the read time ceiling only when a read access that requires it is

issued by the transaction. Once computed, this time ceiling is then

stored in the transaction header for possible future uses. Which strat-

egy is to be preferred depends on the variability of the sets of higher

data segments the transactions in the same class will access. However,

regardless of the timing strategy, the basic function of the module COM-

PUTE RTC remains the same.

The function Aj(TS) is evaluated by the application of a series of

the IOLD function along the critical path from the source data segment

Di to the target data segment Dj. COMPUTE_RTC(i,j,TS) can be imple-

mented recursively. At each step, the parent data segment, say Dh, of

the current source data segment is found. An :-OLD function is invoked

which finds the initiation time of the oldest active transaction at time

TS in that parent data segment Dh. This initiation time Is then passed

as new TS to the next nvocation of COMPUTE RTC along with Dh as the new

source data segment. The procedure COMPUTE RTC therefore repeately
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calls itself until the source data segment and the target data segment

in the call coincide. The parent of a data segment along the critical

path to the target data segment is obtained from a table PARENT, which

is a static table derived from the data segment hierarchy.

An efficient implementation of COMPUTE-RTC depends on an efficient

algorithm for finding the initiation time of the oldest active trans-

action at a given time. Due to difficulties involved in concurrent

accesses to the Transaction Table and the Pseudo-transaction Table, two

new tables, called the Summary Tables, are derived from them for use by

COMPUTE-RTC. The data structures and operations on these tables, and

how fast evaluation of i OLD can be achieved, is presented in the fol-

lowing sub-section. -

7.4.3 DATA STRUCTURES AND OPERATIONS

In this sub-section we describe the data structures of the four

tables involved in timestamp managment and then discuss how concurrent

accesses, updates and garbage collection are achieved.

The four tables are the Transaction Table (TT), the Transaction Sum-

mary Table (TTSUM) which is derived from TT, the Pseudo-transaction

Table (PT) and the Pseudo-transaction Summary Tatle (PT SUM) which is

derived from PT. Each data segment has a set of these tables associated

with it. They are all implemented as ring buffers with associated
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FREE SPACE BEGIN and FREE SPACE END pointers. Each entry in the tables

is composed of two fields: Initiation time (IT) and Commit time (CT)

corresponding to a particular transaction or psuedo transaction.

7.4.3.1 THE TRANSACTION TABLE (TT)

The Transaction Table is merely a running log of initiation times of

recent transactions. For each incoming transaction, INITIATION provides

an initiation timestamp and creates a new entry at the bottom of TT with

the entry's commit time field set to a large value. Therefore TT is

always ordered by the initiation time field. When a transaction is fin-

ished with its commit process, COMMIT TIMESTAMPING provides a commit

timestamp and locates the transaction's entry in TT and updates the com-

mit time field. As shown in Figure 28, if the committing transaction is

the oldest active transaction at the time of its commitment, then

COMMITTIMESTAMPING removes the entries at the top of TT (by advancing

the FREESPACE END pointer) until the new top entry is the next oldest

uncommitted transaction in the table. :t also then creates appropriate

entries in the Transaction Summary Table. Since the entry at the top of

'TT is always the current oldest active transactiun, whether a committing

transaction should be inserted into the Summary Table can be easily

decided by the COMMIT TIMESTAMPING process.

7.4.3.2 THE TRANSAZTION SUMMARY TABLE (TT SUM)
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The Transaction Summary Table contains the initiation times and the

commit times of transactions that are 'time-dominant'. A time-dominant

transaction is one which at some point in time has been the oldest

active transaction in a data segment. Entries are inserted in TT SUM

• .when a time-dominant transaction commits. Since time-dominant trans-

actions will commit in the order of their initiation times, the

insertion procedure ensures that TTSUM is ordered by both the initi-

ation time and the commit time fields.

As discussed under The Transaction Table, insertion of entries into

TT is performed by COMMITTIMESTAMPING. Every time COMMIT TIMESTAMPING

commits a transaction that is at the top of the Transaction Table, that

transaction's commit timestamp is inserted and a new entry with the ini-

tiation time field set to be the initiation time of the next oldest

active transaction is created.

7.4.3.3 PSEUDO-TRANSACTION TABLE (PT)

Whenever the module REQUESTLTS is invoked and passed with a source

data segment Di, a target data segment D,, and a timestamp TS,

REQUESTLTS will guess at the value of B,3 (TS) and return it. However,

enforcement of the guessed value involves pseudo transactions to be cre-

ated in the transaction classes rooted in beween D, and D, whose sole

function is to influence tirnestamp management. Therefore REr2UEST_LTS

must insert the initiation time and the commit time of a pseudo trans-
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action associated with a data segment in the Pseudo-transaction Table of

that data segment for use by other timestamp management modules.

PT is to be ordered by initiation times. Since pseudo transactions

may not arrive in that order, REQUESTLTS may have to shift entries when

inserting a new entry.

Entries in PT are removed by the INITIATION process. As shown in fig

Figure 29, when a real transaction is initiated, the INITIATION process

also looks at the top of the Pseudo-transaction Table and removes all

entries in the latter that have initiation times smaller than the newly

initiated transaction. (This can be done because pseudo transactions

are always assigned an initiation timestamp later than the time when it

is created.) These entries are then inserted into the

Pseudo-transaction Summary Table to be described below.

7.4.3.4 PSEUDO-TRANSACTION SUMMARY TABLE (PT SUM)

The Pseudo-transaction Summary Table contains the initiation and com-

mi- times of pseudo transactions that have become current enough for use

by COMPUTE_RTC. An entry in the Pseudo-transaction Table becomes cur-

rent when a real transaction with an initiation time greater than that

of the former has been initiated. Therefore inserting entries into

PT SUM is performed by the 1NITIATION process.

Bo
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Like the Transaction Summary Table, the semantics of the insertion

process enables PT SUM to be ordered by both the initiation times and

the commit times. These two summary tables are therefore in a desired

form to be presented to COMPUTE RTC.

7.4.3.5 USING THE TIMESTAMP MANAGMENT TABLES

The conflict matrix among the four operations INITIATION,

COMMITTIMESTAMPING, C'4PUTERTC and REQUESTRTS under the strategy of

deriving summary tables from the Transaction and Pseudo-transaction

tables is shown in Figure 30. Comparing this figure with Figure 23 on

page 141, one can see that the nature of the conflict between

COMPUTERTC and other atomic work units has been changed from a direct

conflict on PT and TT to be that on PT SUM and TT SUM.

Given the two summary table, the initiation time of the oldest active

transaction rooted in a data segment Di at a given time TS can be found

by looking into the summary tables corresponding to D, according to the

following algorithm:

(1) Idneti.y the current bottom entry of the two tables.

(2) For each of the tables, examine each entry from the bottom of the

table up until an entry e with a commit timestamp earlier than

TS is found. Then obtain the initiation time value of the entry

tnat follows e.
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(3) Compute the minimum of the following three values: TS and the

two initiation values obtained from the two tables. Return this

minimum.

It can be shown that this algorithm does not interfere with concur-

rent insertion and garbage collection processes on the two summary

tables. To prove this, we provide the following facts (Note that those

properties of the summary tables that concern the following facts are

missing from the original PT and TT and therefore non-interfering read-

ing of the tables could not be achieved were COMPUTE RTC to directly

access PT and TT):

(!) Insertion to the summary tables always occur at the bottom of the

table. Those newly inserted entries, however, will not be of

interest to any concurrent COMPUTERTC process because the lat-

ter must be searching for an entry earlier than the ones being

created.

(2) Garbage Collection of the summary tables always occur from the

top of the tables. However, it will not interfere with the con-

current COMPUTE-RTC processes because Garbage Collection only

strip off those stale entries (_.e., entries corresponding to

transactions committed before certain tmewall) that would no .- 7-

longer be the target entries being searched for by a concurrent

COMPUTERTC.

......



To concl.ude, we have, ty designing data structures that are !Dest

suited for COMPUTE RTC, enables the process of eval.uating A function to

proceed without having to be interfered by any concurrent activity.
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8.0 HIERARCHICAL DATABASE DECOMPOSITION METHODOLOGY

8.1 INTRODUCTION AND SUMMARY OF RESULTS

As concluded in previous chapters, successful application of the HDD

approach to concurrency control depends on an intelligent choice of the

data segment hierarchy on which the protocols are based. How this

choice can be arrived at is the subject of the current chapter on decom-

position methodology. In essence, we would like to develop an algorithm

that, given the description of a database application which is captured

in a specified form, will efficiently compute a favorable database seg-

*mentation and a corresponding data segment hierarchy for use by the HDD

-. concurrency control technique.

This chapter is composed of four sections. The next section develops

a formal model for describing the problem of hierarchical decomposition.

The model is an integer programming model and takes the description of a

database application in terms of 'data comnonents' and 'transaction

types'. The objective of the integer programming Js to find an optimal

*scheme for clustering these data components into a hierarchy of data

segments. The complexity of the model is analyzed in the subsequent

-. section, which concludes that the decompositiCn problem is NP-hard,

therefore optimization is pract:cal only for very small problems. To
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remedy this situation, a heuristic procedure is developed in section

four which attempts to find a 'good' solution in a reasonable amount of

time.

8.2 A FORMAL MODEL OF THE HIERARCHICAL DATABASE DECOMPOSITION PROBLEM

In this section, the p-oblem of finding a favorable database segment

hierarchy given the description of a target database application is for-

mulated into an optimization problem.

The formulation assumes that an analysis of the database application

has been performed and the content of the database as well as its

accesses by transactions is understood and documented. This document

must describe three aspects of the application:

(1) Data components, which are mutually exclusive and collectively

exhaustive subsets of the data items in the database where data

items within the same subset exhibit generic similar-ties. For

example, an EMPLOYEE relation could be considered a data compo-

nent. Data components will constitute the smallest units for

consideration as data segments (i.e., data segments are clusters

of data components.)

(2) Transaction types, whzch are also mutually exclusive and collec-

tively exhaustive subsets of the update transactions to be run

in the database. Transactions within the same transaction ty;e
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have similar database access requirements. Transaction types

will constitute the smallest units for consideration as trans-

action classes.

(3) Access frequencies, which describe the frequencies of read and

write accesses from each of the transaction types to each of the

data components.

A database application where the use of the HDD concurrency control

technique potentially produces gains is one in which accesses from some

transaction types to some data components are read-only. These

read-only accesses are the source of the usage of the H protocol. How-

ever, given that the database application exhibits the potential for

applying the HDD concurrency control technique, one must also discover

how data components ought to be merged and fit into a hierarchy so as to

maximize the use of the H protocol and minimize the use of the L proto-

col.

This problem of discovering the optimal data segment hierarchy can be

formulated as an integer programming problem in which the frequency of

usage of the H protocol and that of the L protocol can be expressed giv-

en an assignment of the data components to a data segment hierarchy.

Formally, given a database application which is composed of a set of

data components DCI, DC2, .. , DC., and a set of transactIon types TP,.

TP2, ... , TPm, and g;ven that the read and write access frequenc-es of

transaction type TP, to data component DC, are known as r,.: and w,..,
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we want to find an assignment of the n data components to a data segment

hierarchy DSH consisting of up to n data segments DS1 , DS2, ... , DSn,

wnere it is assumed that DS1i is higher than DS, 2 in DSH if il < i2,-2

(i.e., we assume that the index of a data segment is an indication of

the position of that data segment in the hierarchy,) such that the

access gain function, defined as a weighted sum of the frequencies of

the usage of the H protocol and the L protocol, is maximized. In other -

words, let

r =.j frequency of read accesses from TPj to DCl, i = i,....m, j =

1,.. .,n,

wi.j= frequency of write accesses from TP1 to DCI, i = l,...,m, =

The problem is to solve for the following set of decision variables X

and Y:

if DCJ is assigned to DSk
Xi.k =11""'

0 otherwise

for j = ,...,n and k = i,...,n, and

=11 if TP, is assigned to DSkV---
0 otherwise

for i -l,...,m and k =,..., n.

Subject to the following constraints:

(I.) Each data component must be assigned to one and only one data

segment,

o°°.o..



n
i~ e , r X j~ k 1- for j = 1 ,...,n . -

k=1

J
(2) Each transaction type must be rooted in one and only one data

segment,

n
i.e., wI Y.k I for li.n o

k=1

(3) A transaction type will not write into a data segment higher than

its own root segment,

n
i.e., w1 4j Xjk I Yi~, 0 for all i,j,Jc.

h=k+l

The objective is to maximize the number of read accesses to higher

data segments from transactions rooted in lower data segments (i.e.,

usage of the H protocol) and to minimize the number of read and write

accesses to lower data segments from transactions rooted in higher data

segments (i.e., usage of the L protocol.) With the above definitions,

the frequency of use of the H and the L protocols can be expressed as

follows:

(1) Frequency of the H protocols

m n n n
-I I I I r,J ,X . Ylr. i
i=1 j=1 k--1 h=k+l

(2) Frequency of the L protocols

m n n k-1

i=! j=1 k=1 h=1
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We will formulate the objective function as the first term above minus

the second term weighted by the 'distance' in the segment hierarchy

between the root data segment and the data segment being accessed, and

by p, the cost ratio of the L protocol over the H protocol. (i.e., The ..

gains of the use of one H protocol will be offset by the cost of the use

of p times the L protocols of 'distance' one.) Formally, let the weight

of using the L protocol to access a lower data segment DSi 2 by a trans-

action rooted in a higher data segment DSjI be djIi 2.Then dJ.j 2 =

p(l-JI2) for j! < j2. The objective function can be formulated as fol-

lows: ,-."

m n n n
MAX r i ( I r Xi- X *Y ,

i=1 j=. k=l h=k~l

k-i
- I j + w13j) *Xik *Yilh *h

h=1

-. "

Now we summarize the above formulation by presenting the entire prob-

lem formulation for the HAC problem as follows:

m n n n
MAX I I I ( I r. , XJ.k

i =1 k=1 h=k+l

k-i ::

-, W, .1+ ,) X3.k Y, h dh.k)

subject to
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n
(1) 1 X k 1, X k = 01

j =1

m

(2) Y Yi.k = 1, Yi~k = 0,1
i=l L:

n

(3) wI. * Xj.k * I Y1,. = 0
h=k+l

for all i = 1,...,m, j = i,...,n, and k = i,...,n.

The above formulation will from now on be referred to as the Hierarchi-

cal Assignment Optimization Problem, or the HAO problem.

8.3 COMPLEXITY OF THE HIERARCHICAL ASSIGNMENT OPTIMIZATION PROBLEM

The integer programming optimization problem presented in the previ-

ous section, once solved given a particular set of r and w parameters,

will produce the optimal segment hierarchy for use by the HDD concurren-

cy control technique. However, the complexity of the HAD problem

appears to prohibit an exhaustive search for an optimal solution when

the problem is of a non-trivial size. in this section, the complexity

of the HAO problem is analyzed. The theory of NP-completeness is

applied to show that the HAO problem is NP-equivalent, which amounts to

asserting that a polynomial time algorithm exists for this problem if

and only if such an algorithm exists for the hardest problems in the
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class NP. This conclusion signals the need for an efficient heuristic

procedure for producing 'good' solutions for the HAO problem.

We will first review and clarify the concept of NP-hardness. A prob-

lem p is said to be NP-hard (i.e., at least as hard as an NP-complete

problem) if there exists an NP-complete problem p' such that p' is

Turing reducible to p <Garey79>. Turing reducibility from p' to pis

established by asserting the existence of a (polynomial time) Turing

reduction algorithm. A Turing reduction algorithm from a search problem

p' to another search problem p is an algorithm A that solves p' by

using a hypothetical subroutine S for solving p such that if S were a

polynomial time algorithm for P. then A would be a polynomial time

algorithm for p'. intuitively, this means that one can show that a

problem p' is Turing reducible to p by demonstrating that p' can be

solved by calling a polynomial number of times the algorithm that solves

p as a subroutine.

Based on the above discussion, to prove that HAO is NP-hard, one must

find an NP-complete problem p' and show that p' is Turing reducible to

HAO. To facilitate the proof procedure, we will re-phrase the integer

programming formulation of the HAO problem. The new formulation will

express the sets of 0-1 decision variables X and Y as functions f and g

where f assigns data components to data segments and g maps transaction

types to thear root data segments. In additlon, the set of weight val-

-1S2-"--'
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ues d is augmented in order to simplify the expresssion of the objective

function. This new formulation is given below:

T-he Hierarchical Assignment Optimization (HAO) Problem:

Instance: Given rj,,j w1 3,j i = l...,m, It =1.,n, and dh,k, h,k-

I,. n, where

0 if h k

where p is a positive number.

Objective: Find functions f and g where

f: (12.,,2,...,n,.,l and

g: {i2..m >{,,~nsuch that

*(MAO-Cl) for all i and j where wij 0 0, g(i) 5 f(:), and

*(HAO-Objj) the weighted SUM X(r,a + wij) *dg(1),f(j) is maximized.

The orem. The Hierarchical Assignment Optimization problem is

* NP-hard.

Proof. The proof consists of two parts. The first part proves that

the decision problem counterpart of the HAO problem, called the Hierar--

chical Assignmemt problem, or the HA problem, is NP-complete. The sec-

ond part, using relatively standard arguments, proves that the HA

* problem is Turing reducible to the HAO problem, therefore by the defi-

nition of NP-hardness, HAO is NP-hard.



To prove the first part, we will first formulate the decision problem

counterpart of the HAO problem, namely, the Hierarchical Assignment

Problem as follows:

The Hierarchical Assignment (HA) Problem:

Instance: Given ri j, wj 3 , i i,..,., j = l,...,n, a positive intenger

Q, and dh.k, h,k = l,...,n, where

0 if h = k

dhk= 1 if h > k

p(h-k) if h < k

where p is a positive number.

* Question: Does there exist two functions f and g where

f: {I,2,...,n) -> fl,2 ,}, and

g: [,1...2,m}-> fi2,...,n}, such that

(HA-Cl) for all i and j where w1, 0 O, g(i) 5 f(j), and

(HA-C2) the weighted sum X I(r 1 ~ * wij) * dg(j),f(j) is at least Q?

Lemma. HA is NP-complete.

Proof. (I) NP class membership: it is obvious that given f and g,

the decision problem can be verified in polynomial time by merely (a)

computing the sum and checking It against Q, and (b) verify that g(i) 5

f(j) for all i and j where w,., 0.

S.. ~ '- - -. .. .- ".--* "-- . . . .



(2) NP hardness: HA is NP-hard if one can find a problem pknown to

- be NP-complete such that p is (polynomial) transformable to HA. We

+. will present a proof using the technique of restriction, which identi-

fies a restricted instance of HA and equate ±t to a known NP-complete

problem, namely, the Maximum Cut (MCUT) problem.

Restricting the HA problem:

Step 1: Let the parameters wi.j be restricted such that there exists

a function ROCT: {1,2,...,m) -> {1,2,...n) such that wi = 0 for all j

0 ROOT(i). (i.e., Every transaction type TP, writes in only one data

component, namely, ROOT(i).)

The purpose of this restriction is to enable the dropping of the

function g and the constraint HA-Cl from the HA problem. We achieve

this by restricting the problem so as to make function g completely

derivable from the function f given another known function ROOT. The

reason that we could do thts is as fcllows. Since dn.k is oosit!ve only

when h > k, there is an incentive built into tne problem, due to the

nature of the objective function, to maximize g(i) so as to increase the

chance that the multiplier dg( 1).f,) actually used in computing the

objective function is positive. However, maximizing g(i) is subject to

constraint (HA-Cl), i.e., g(i) cannot be greater than f(-) for all 

where w, . 0. Comtining this otservation with tle current restrictlcn

that w,. = 0 for all 0 # ROCT(i), it is clear that the optimal choice

• ~~........., ........ ,.,.............. .
...................... . . . .. . . . .. . ..""-: "" ' = 2 ' , I ' .' .. <_ .-' ..' '.: . . .. . . '. " ."'.. " . ", ' " •. ",.."., ". "...• '..•.", '.,".. , ."*"." .".



cf g() under the current restriction is g(i) = f(ROOT(i)). Therefore,

in this restricted version of the HA problem, the function g is entirely

derivable from function f, and the constraint HA-Cl can be dropped.

Step 2: We will subject the problem to the following additional two

restrictions:

m= 2

n > m.

With these restrictions, and the fact that max(f(j)) S min(m,n), the

function f can now be defined as follows:

f: {l,2,....n} -> {I,2}. 

The reason for f(j) to be bounded from above by min(m,n) is that the

number of data segmenti contained in an optimal data segment hierarchy

cannot be more than the number of transaction types, because if this

were not the case, then there would exist some data segment not rooted

by any transaction type that can be merged with its parent data segment

in the segment heirarchy without incurring a penalty to the objective

function, and thereby reducing the number of data segments in the opt-i-

mal data segment hierarchy.

The purpose of this step 2 restriction is to transform the assignment

problem into a 2-partition problem.

Step 3: Let q, = ri . w,.,. The last set of restrictions to be

applied is as follows:

::T -186-.
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p 1, and

q =.j qj.i for all i and

These retrictions are applied to transform the problem from a directed

partition problem into a simple (i.e., undirected) one.

The original problem with these three steps of restrictions can now

be reformulated as follows:

The Restricted HA problem:

Instance: Given r1 ,, wi~ j, where i = 1,2 and j = 1,2,...,n, and n > 2,

a function ROOT: {1,21 -> {1,2 ...., n}, a set of d values where d1 j = d

2.2 = Or d2 . = 1 and d1 .2 = p where 0 < p < 1, and a positive integer

Q, and that these parameters satisfy the constraints (1) rij + wi,j = r -

j. + wi,, for all i,j and (2) wi,j = 0 for all pairs of i and j where .

* # ROOT(i)'

Question: Does there exist a function f: [i,2,...,n} ->{1,21 -

such that I I (r,.j +wi,j)* df(root(!)),f(j) is at least Q?

We will now show that the Restricted HA problem is identical to the

Maximum Cut problem defined below:

The Max Cut (MCUT) problem:

. Instance: Given a graph G = (V,E), where V = {l,2,..,vl , weights on

edges w(k,j) e positive integers for all edges e(k,j) E E, and a posi-

tive integer Q'-
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Question: Is there a partition of V into disjoint sets V! and V2 such

that the sum of the weights of the edges from E that have one end point

in V1 and one end point in V2 is at least Q'?

Let p' be the smallest integer such that p'/(!-p) is an integer. The

process of equating MCUT To Restricted-HA is as follows:

(1) Let V = {1,2,..., n).

(2) Let w(k,j) = p' * (ri.j + w,,j), where k = ROOT(i).

(3) Let Q' = Q *p/(l-p).

Since MCUT is NP-complete <Garey79> and Restricted-HA is identical to

MCUT, we conclude that MCUT is transformable to HA, and therefore HA is

NP-complete. 0.. .

Now we must show that HA is Turing reducible to HAO to complete the

proof of our theorem. This, however, is obvious because if there

existed a polynomial algorithm A that solves HAO, then HA can be easily

answered by calling A once and compare the optimal value produced by A

with the decision threshould Q in HA. ,.F.

8.4 A HEURISTIC ALGORITHM FOR THE HIERARCHICAL ASSIGNMENT OPTMNZAT:ON

PROBLEM

*-188- "-
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., this section we will present a heuristic procedure for producing a

=ood but not necessarily optimal solution for the hierarchical assign-

men: optimization (HAO) problem introduced in the previous sections.

,he heuristic procedure is based on an analysis of the special structure

of the HAO problem. This analysis sheds light on two aspects of the

protiem: first, how one may find a potentially good initial solution for

the problem; second, how one may improve on this initial solution.

8.4.: THE TABULAR REPRESENTATION CF A SOLUTION TO THE HAO PRCBLEM

We will show that any solution to the HAO problem can nt represented in

a tabular form in which the individual elements in the two summation

components of the objective function are separately displayed. Based on

this observation, the objective of the heuristic procedure is to identl-

- fy a solution whose tabular form possesses the property that the region

representing the positive component of the objective function is maxi-

mized while the region representing the negative component is minimized.

This observation is used to guide the design of' our heuristic procedure.

We will therefore first briefly describe this tabular form of solution

to the HAO problem.

Let the parameters of a database application be represented by an

access frequency table in which there are m rows reprent.ng m trans-

action types and n columns representing n data components. Each cel: o.
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the table is composed of two values ri~ and wi1 3 . An example of such a

table is shown in Figure 31.

Given any feasible solution s =If, g) to an HAO problem with an

access frequency table T. where f and g are defined as in the previous

section, we can partition the cells in T into three kinds:

(1) The E cells: A cell (i,j) in T is an E-protocol cell, (or E cell)

if there exists k such that f~)=k and g(j) =k.

(2) The H cells: A cell (i,j) in T is an H-protocol cell, (or H

cell) if g9i) =k2 and f(j) =k1 and k1 < k2.

(3) The L cells: A cell (i,J) in T is an L-protocol cell (or L cell)

if g(i) =ki and f(-J) =k2 and ki < k2.

In essence, a cell is an E cell (H cell, L cell) if, under solution

S, the accesses to the database described by that cell have to use the E

protocol (the H protocol, the L protocol.) By the definition of a fea-

sible solution, all w1 3j where (i,j) is an H cell must be zero. The

objective function value corresponding to a feasible solution S can be

given as the following:

(Obj) I r - ( 1  W".j) dg* .fj
(,)is (ij) is

an H cell an L cell

The tabular representation of a solution S for a problem with an access

frequency table T is a permutation of T in which these three ki.nds of

cells are neatly bundled together. Fortflally, the tabular representation

. . . . . ... .
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of an access table T given a solution S, denoted as p(T,S), is a table

produced by permutating rows and columns in T using the following rules:

(1) Permutate columns of table T such that if f(Jl) = ki and f(j2) =

k2 and kl < k2 then column jl is before column j2 in the repre-

sentation.

(2) Permutate the rows of table T such that if g(il) = kl and g(i2) =

k2 and ki < k2 then row il is before row .2 in the represen-

tation.

It is interesting to see that in the tabular representation the E cells

partition the rest of the cells diagonally into two regions, where the

lower-left region corresponds to the collection of H cells, and the

upper-right region corresponds to the collection of L cells. An example

of the tabular representation of a solution to the example table shown

in Figure 31 is shown in Figure 32.

The property that the three kinds of cells are bundled into regions

in the tabular representation enables a visualization of a solution S.

Solving for the HAO problem with a table T can now be considered as a

process of shuffling the columns and rows in T and creating a diagonal

region (1) below which the constraint on H cells is enforced and (2)

that the values in the cells in the lower-left region is maximized

w.r.t. those in the upper-right region. The solution captured in the

tabular representation then can be read from the permutated sequence of

the columns and the span of the diagonal region. This pictorial expla-

-192-
.-...-.. *.*.*%****.-.* .. **........ . *.

o* . " ."- %. '.



Assuming a solution to the above problem is the following
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nation of the solution leads to the devise of the following heuristic

procedure.

8.4.2 AN OVERVIEW OF THE HEURISTIC PROCEDURE

The heuristic procedure consists of two stages as shown in Figure 33.

The first stage attempts to find a 'favo-able' permutation of the data

components. Once this permutation # is found, where #(i) denotes the

index of the data component chosen to be the i-th data component in the

permutation, the function f is simply one which assigns data components

to data segments in a one-to-one manner where data component DC#(l) is

* assigned to data segment MSi. The function g, derivable from function

f, assigns the highest data segment in f that a transaction type writes

in to be its root data segment. No merging of multiple data components

to form one data segment is considered at this stage. Therefore the

solution produced by this stage would result in a data hierarchy con-

sisting of n data segments, and a transaction type is assigned to be

rooted in the highest data segment it has to write into.

The second stage is one in which a local interchange/merging process

of a certain 'degree' K is performed on the fIrst-stage solution S1 to

improve on the latter and to arrive at a final solution S(2). If the

objective function value of the solution S(2 1, denoted as v(S( 2 1), is

non-positive, then the heuristic procedure has failed to produce a fea-

sible data segment hierarchy that will produce net gains.
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Note tnhat v(S*), where S* is the optimal solution to the HAO problem,

is always bounded below by 0. This is because a solution in which all

data components are merged into one data segment is always a feasible

solution which produces an objective function value of zero. Therefore

io v(S(2 1) < C, then one can always discard S(2) and set the solution to

the problem to be a complete merge of all data components into one data

segment.

8.4.3 THE FIRST STAGE OF THE HEURISTIC PROCEDURE

The objective of the first stage is to find a reasonable permutation

# of the data components. The 'reasonableness' of this initial solution

hinges upon the likelihood of the existance of a 'good' solution S(2) in

which those data components that are close to each other in the permuta-

tion # are either merged or assigned to data segments that are close to

each other. If such a goold solution does exist, then it can be found

in the second stage from the first-stage solution S" with a proper

choice of the degree k.

in our algorithm, # is chosen in a sequential manner by selecting,

based on some rules, data component l to be #(I), then data component

j2 to be #(2), and so on. Therefore this process .s composed of a total

of n steps, at the i-th step of which #(i) will be selected from the

remain-ng pool of data components. At any step we must evaluate the

rema±ning data components to find the one that might produce the biggest
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gain when assigned to #(i). To avoid combinatorial explosion, we wish

to limit our consideration to just the immediate impact of the next

selection on the value of the objective function, without regard to the

impact of the ordering in # of all the yet-unselected ones. We will

compute this immediate impact by pretending that the remaining data com-

ponents would be merged once the next selection is made, and therefore

the component selected should be the one that will make the biggest con-

tribution to the objective function under this assumption. This

procedure embodies the philosophy of a 'greedy' move often encountered

in the design of heuristic procedures, which selects the next node to be

evaluated in the branching tree by computing the immediate gains only.

An additional rationale for this algorithm is that it is recognized

that the optimal solution to the HAO problem is one in which those data

components that many transaction types have high-volume read-only

accesses to are assigned to data segments that are relatively higher

than some others, so as to enable these read-only accesses to use the H

protocol and therefore increase the value of the objective function.

The algorithm in stage I has tte property that it tends to select data

components that many transaction types generate high-vclume read-only

accesses to as first ones in the sequence #. This increases the chance

that the initial solution is close to some good solution.

I2 .......
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This zrocedure is formally described as follows. Let S( ", i 1 ,

be the solution produced right after the i-th component of # is

computed, i.e., .- -

~(1.1) : { f(l.1), g(.1) f~l.' (j)) : 9 for j i,

f( l )(j) = i+l for all j not in {#(I),

g9'' (k) = mir. {f(l.(j) I wk*j 0 0}1

The heuristic rule for choosing (i) is as follows: choose # 1), 5 -

*(i) < n, #(i) not in {#(I), #(2), .... #(i-l)}, such that v(S ( '')is

maximized. r

.- 8.4.4 THE SECOND STAGE OF THE HEURISTIC PROCEDURE

In the second stage, attempts are made to improve the solution

produced by 'he first stage through performing up to n local

interchange/merging steps. Each of these steps is performed on top of

the intermediate solution produced in the previous step and is guaran-

* teed to generate a solution at least as good as the previous one. An

informal description of the algorithm is as follows.

At the first step, the solution S(1) produced by the first stage is

taken as the initial solution. The bottom K data segments in this sol-

ution, for a fixed and small number K, are examined and evaluations are

made for all possible re-arrangements, 4ncluding merging of these K da-a *-"

segments, while keeping the rest of t.he data segments where they were in
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the inital solution. An arrangment of these K data segments is then

chosen which is concactenated from the bottom with the rest of the data

segments in the initial solution to form the solution for the first

step. At the next step, taking the solution produced by the previous

step as the initial solution, the same process is repeated for the K

data segments that are as close to the bottom as possible but subject to

the constraint that at least one new data segment that was outside of

the scope of the K data segments considered in the previous step is

involved. This process is repeated until all data segments in the ini-

tial solution S(1) has been included in at least one of the local

interchange/merging steps.

The rationale behind this algorithm is the belief that it is- very

likely that the initial solution produced in the first stage is a rough

cut of a good solution that local refinement of the sort described in

the above algorithm can bring out. Referring to the tabular represen-

tation of the solution, each step in this second stage looks at a bundle

of data segments and evaluates the result of different ways of rearrang-

ing these data segments. Then in the next step, moves the bundle to be

considered up by one data segment. Every time a bundle is examined, the

area covered by that bundle is refined to make the left-lower region in

the tabular representation even 'heavier', thereby bringing the solution

closer to a desired form. An example of this process in its tabular

form is shown in Figure 34.
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The algorithm is formally described as follows: Let the solution j
produced by step i of the second stage be S12 '), the number of data

segments in S(2,i) be denoted as q~I. At the beginning of step i, giv-

en S12.i1), the task is to find a function G'' ) = { Q, Q+I, • Q+K-i

} -> { Q, Q .... , Q+K-l } where Q = min I n-K-i 2, q(-'-K+! }, such

that v(S' 2 '1) is maximized, where S('2 1 = {f(2.), (2.)} and ( 2 . )

- defined as follows:

f'2-1') for

&(2. G) f) for Q - K-

e(. e for J Q -K-i,

where e = (Q+K-1) - Max { G''(3) }I

The complexity of the second stage algorithm depends on the choice of

K, as the total number of evaluation to be performed in this stage is in

the order of n * K! , (C(k,!) C(k,2) + ... C(K,K)), clearly

non-polynomial in K. However, the larger K is, the higher is the proba-

-illty that the final solution found at the end of the second stage is

closer to the optimal solution. Therefore chcice of K represents a

tradeoff between closeness to the optimal solution and the consideration

for computing cost.
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9.0 APPLICATIONS OF THE HDD APPROACH TO DATABASE CONCURRENCY CONTROL

This chapter is devoted to application studies. The purpose of these

studies is to illustrate how the HDD approach can be effectively

applied. In the first of these three cases, we show how the hierarchi-

cal algorithm can be used to improve performance of a database with a

heavily congested index area. The case is an application of the hierar-

chical method in a simple cyclic database partition composed of

essentially two data segments. In the second case, we show how the HDD

approach can be used to restructure a banking application from its cur-

rent segregated state of operation into a real-time database operation

without increasing data contention. It also exemplifies the advantage ...

of using the HDD approach to structure databases. In the third case, we

show how database computers with large-scale multiprocessing activities

can benefit from a design guieded by the concept of hierarchical decom-

position - how the latter helps reduce the inter-processor interference

due to database concurrency control.

*, 9.1 CONCURRENCY CONTROL IN AN INDEXED DATABASE

In this section we present an application of the hierarchical decom-

position approach to concurrency control in a database management system
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that uses multi-level indices as access paths. Dividing the database

into an index data segment and a data record segment, we obtain a simple

decomposition of the database into two data segments. This case there-

- fore illustrates an application of the HTS algorithm to a simple

two-data segment cyclic data partition. The motivation behind choosing

this arrangement as one of the cases for demonstration is two-fold.

First, the indexed database is a structure that is popular in database

management systems. Second, this case is easy to understand and is sim-

ple in terms of the structure of the data segment hierarchy (consisting

of only two data segments) but clearly demonstrates one particular

aspect of the effectiveness of the HTS algorithm - how it can be used to

relieve contention in a high-traffic area of the database, in this case,

the index area.

The structure of this section is as follows. We will in the first

subsection review the basic data structures and operations on indices -

organized as B-trees. it will then be shown that synchronizing trans-

actions and their accesses to index records may result in degradation of

performance due to the higher traffic volume in the index area.

However, if only a portion of the transactions will cause an update in

the index area, and that they can be declared before they start, we will

in the second subsection show how the HTS algorzthm, by assigning the

index area to the higher-level data segment in the segment hierarchy,

achieves the effect of giving preferential treatment to the index area

and allows transactions that update the index area to proceed with lit-
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tle interference from transactions that do not have to update the index

area. An intuitive example will be given, followed by a quantitative

analysis via a simple analytical model that attempts to capture, for

comparison purposes, the essence of the contention behavior in this case

*under two different concurrency control methods: two phase locking and

the HTS algorithm.

9.1.1 THE B-TREE INDEX STRUCTURE AND RELATED RESEARCH

The B-tree index structure is a multi-level indexing scheme with

dynamic balancing. As shown in Figure 35, in a multi-level indexing

scheme, every index record consists of a number of elements of the form

<pointer-to-next-levei-index-record, 1,igh-key>. At the leaf level of

the multi-level index tree, the elements in the index record have the

form of <pointer-to-data-record,key> and contain pointers to the data

records themselves. To search for a data record with a particular key

value (or a set of records within a certain range of the key values), a

transaction scans the highest level index record, identifies the element

in the index record with the lowest high-key value that is higher than

the key value being searched for, and advances tc the next-level index

record by following the pointer contained in that element. t repeats

the process until the desired data record is finally located.

Multi-level indices could remain unchanged when data records are

inserted, deleted and udpated. This static scheme is suitable for data-
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bases that are not updated very frequently. However, if a database is

udpated frequently, then as the database evolves, an initially balanced

multi-level index may become grossly unbalanced and cause serious per-

formance degradation in record searching. Therefore under a static

scheme the database is subject to periodic reorganization to produce

new, balanced indices. An alternative scheme is to introduce dynamic

balancing as the database evolves. This gives rise to using the B-tree

scheme for organizing indices.

Dynamic indexing is very similar to the static scheme in its data
L

structures. The main difference lies with the additional activity for

dynamic balancing associated with each insertion and deletion. In a

B-tree indexing scheme, the number of pointer-key elements in an index

record is constrained by a parameter k, where

k : number of pointer-key elements per index record 2k-l (1)

Inserting a data record into the database will cause a new pointer-key

element to be added to the appropriate leaf index record. However, to

enforce (1), adding a new element to an index record where 2k-1 elements

are already in the record will cause the record to be split into two.

This in turn will cause the higher-level index record to be updated,

which may in turn cause the higher-level index record to be split, and

the effect may ripple to the highest level index record. Conversely, .'*.

deletion of a record will cause an element to be deleted from the appro-

-207-

* .. °. . .. *..* . .o. .. .. .. °*

.' . ' t ' '.""." ". ' .. v' -." ."....".. ". " - "°". " • "...... . . . . . .. . . . . . ... •.... . .".......-.. .-..-.. .-.. . . . . . . . .-. I'2



priate leaf index record, which may in turn cause a merge of this index

record with a neighboring index record to enforce (i), and so on.

Dynamic balancing eliminates the kind of performance degradation a

static scheme may suffer from as database evolves, and more importantly,

eliminates the need for periodic reorganization of the database. Howev-

er, the prospect of updating the index records results in the need to

synchronize all transactions' accesses to the index area, a requirement

not needed in the static scheme since in the static scheme the index

area is read-only for all transactions. Since the index area is compar-

atively small and is to be accessed by a large number of transactions,

it is an area of potential threat to level of concurrency in the data-

base. That is, the likelihood that two transactions that do not

interfere at the data record level but interfere at the index record

level may cause serious degradation in the level of concurrency in the

system.

Several locking-based approaches have been proposed to alleviate the

problem. Two most recent works of particular relevance are the struc-

tural locking approach <Kedem7T, Silberchatz80> and the B-1ink tree

approach <Lehman82>. The first approach aims at reducing the amount of

time the locks on the high-level index records must be held by each

transaction. However, it still involves lock and unlock protocols for

each access :o the index area, and the scheme becomes fairly complicated
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when generalized to a multi-key environment or when a transaction

accesses more than one data records (i.e., multi-step transactions.)

The B-link tree approach is an interesting scheme which recognizes

that the basic difficulty of dynamic balancing is the requirement to

immediately propagate udpates to the higher-level index records, i.e.,

an update to the data record and all the associated updates to the index

records would have to be atomic. By slightly relaxing this requirement,

which basically results in allowing the index structure to be temporar-

ily in an 'imperfect' yet correct state, concurrency can be enhanced.

The scheme that we will describe which employs the HTS algorithm is

complementary to the B-link tree scheme. The B-link tree scheme, while

being very specialized (i.e., applicable to B-tree operations only) and

is not generalized for handling multi-key indexes and multi-step trans-

actions, does reveal a philosophy of optimization of concurrency control -

methods shared by the HDD approach: delay as much as possible propa-

gation of updates until a more convenient moment while not compromising

the goal of presenting the database to all transactions in a correct

state. Therefore our scheme can be considered a scheme that is built on

top of the general philosophy of the B-link tree scheme and further

optimizes the synchronization procedures through a different channel.

9.1.2 APPLYING THE HTS ALGORITHM

I209
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We assume that the B-link tree approach is taken to eliminate the
I!

need for an update transaction to be immediately concerned about updat-

* ing the index records higher than the leaf index records. This can be

done by giving the leaf index records temporary fixes after a merge or a

split such that, with the old higher level index record, the desired

leaf index record could still be obtained. The exact nature of this

scheme is fairly involved and is not directly related to the use of the

HTS algorithm, and therefore will not be detailed here. However, we

assume that the leaf index records and the data records are targets of

atomic updates. That is, the effect of updating a data record thatRB

results in a leaf index record being updated would be made known to oth-

er transactions together with changes in the leaf index record. No

partially updated state (i.e., data record updated but the leaf index

record not updated, or vice versa) is to be seen by any other trans-

action. Under this arrangement, we are concerned therefore mainly with

the data segment representing the leaf Index area and that representing

the data record area.

The relevant data segment graph (DSG) and the data segment hierarchy

(DSH) in applying the HTS algorithm to the dynamic indexing problem are

shown in Figure 36. As shown in the figure, the database is decomposed

into two data segments. The higher level data segment (D1) is the index

area, and the lower level data segment (D2 ) is the data area. With this

database partition, two classes of transacticns are identified:
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(I) Transaction class I (Ti): Transactions that involve updates to

one of the indexed fields. These transactions have to write

into both the index area and the data area, therefore are trans-

actions that are rooted in D, (the higher level data segment)

and is the class responsible for the D, -> D2 arc in the data

segment graph.

(2) Transaction class 2 (T2): Transactions that do not involve

udpates to any of the indexed fields. These transactions have

to write into only the data record area, and need only to read

from the index area. Therefore these are transactions that are

rooted in D2  (the only data segment it wirtes into) and is

responsible for the arc D2 -> D I in the data segment graph.

Obeying the HTS protocols, accesses to data granules from a trans-

action will be synchronized by the rules spelled out as follows:

(I) Read(d,t) where d is in D, and t is in TI: Grant access to the

most recent version of d before I(t). Timestamp the accessed

version of d with a read timestamp with value ()

(2) Write(d,t) where d is in D, and t is in TI: Check if the most

recent version of d has been stamped by any time greater than

I(t). If so, abort t. Otherwise, create a new verton of d with

version timestamp I(t).

(3) Read(d,t) where d is in D2 and t is 4n T1: Grant access to the

most recent version of d before 7(t) + q, where q is a constant

predetermined Dy the system for all transactions in class T,
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such that the probability that a transaction in class T1 would

last longer than q is very small. Timestamp the accessed data

version with read timestamp of value I(t) + a.

(4) Write(d,t) where d is in D2 and t is in TI: Check if the most -

recent version of d has been stamped by any time greater than

S(t) + q. If so, abort t. Otherwise, create a new verion of d

with a version timestamp of I(t) + q.

(5) Read(d,t) where d is in D, and t is in T2: Grant access to the

most recent version of d before A 2
1 (I(t)), i.e., the initiation

time of the oldest active transaction in transaction class T1 at

time I(t).

(6) Read(d,t) where d is in D2 and t is in T 2: Grant access to the

most recent version of d before I(t). Timestamp the accessed

data version with read timestamp of value I(t).

(7) Write(d,t) where d is in D2 and t is in T2: Check if the most

recent version of d has been stamped by any time greater than

I(t). If so, abort t. Otherwise, create a new verion of d with

a version timestamp of I(t).

The above seven categories of accesses are summarized in the follow-

ing table where each access is given the protccol name used (i.e., Pro- " '

tocol E, H or L.)

9.1:.2. AN EXAMPLE

.".
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As an example, consider the following database and a set of trans-

actions to be executed concurrently:

Data record: <Social Security Number (SSN), income level>.

Keyed field: SSN

t1: Insert record <7048, 10k>.

t2: Update income level of the record with SSN = 6937.

t3: Update income level of the record with SSN = 7059.

A relevant snapshot of the database before these three transactions are

run is shown in Figure 38. Let the most recent versions in the snapshot

:)f all records involved in the three transactions be before I(tl), and

let I(tl) < I(t2) < I(t3). Now we show a sequence of interleaved exe-

cution of these transactions under control of the HTS algorithm:

ti: access record A and leave a read timestamp I(t) with A.

t2: access recrod A.

t3: access record A.

ti: after creating a new record where SSN = 7048 with a version

timestamp = I(t) + q, create a new version of the record A

with a version timestamp = 1(ti).

t2: create a new version of the record B with version timestamp

= (t2).

t3: create a new version of the record C with version timestamn

= I (t3).

All these transactions 4n our example conflict on the index record A

* but do not conflict at the data level. However, with the HTS algorathm,
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*all three transactions are processed concurrently without inducing any

delay or restart. Moreover, t2 and t3's accesses to the record A do not

entail any effort to timestamp the accessed record. The same sequence

* of actions, if controlled by the conventional MVTS, will result in t2

and t3 leaving read timestamp with record A and also in tl being aborted

and restarted; if controlled by the two phase locking algorithm, will

result in t2 and t3 being blocked until ti is finished in addition to

having every record acceses bracketed in the overhead of locking and

unlocking.

An intuitive explanation for the above scheme to work is that the HTS

algorithm has the net effect of giving a preferential treatment to the

index area. As shown in our example, instead of allowing t2 and t3 to

directly conflict with t, which belongs to the class T1 , it made t2 and

t3 to appear to tl as earlier transactions, even though t2 and t3 actu-

ally started after ti. Transactions t2 and t3 therefore are simply

granted 'earlier' versions and will not leave traces that would have

caused ti to abort. We will in the next subsection present a more ana-

lytical explanation of the forces underlying our simple example.

9-1.3 AN ANALYSIS USING A SIMPLE ANALYTICAL MODEL

we now present an analysis to quantify the effect of the HTS algo-

rithm on performance improvement, in terms of level of concurrency, in

our dynamic indexing case. The analysis is based on a simple analytical
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model of the behavior of transactions synchronized by the two phase

locking algorithm and the timestamping algoirthm.

9_'.3.1 MODELLING APROACH

Due to the complexity of the activities involved in a transaction

processing system under different concurrency control methods, the pres-

ent analysis employs a number of assumptions to simplify the problem.

The alternative method of study would have been simulation, which would

have been both costly and relatively inefficient in providing intuitive

pictures. Therefore, for the purpose of obtaining mean values of per-

formance measures, the present analytical approximation approach is

chosen. The emphasis of comparison is on concurrency control related -

overhead, the relavant measures being frequencies of blocking and

restarts due to data contention.

The classic computer system performance evaluation studies normally

concentrate on the imoact of contention for computer system resources,

such as CPU and I/O devices, on the performance of the system in terms

of response time and throughput. Relatively little attention has been

paid to evaluating the impact of data contention on the performance of a

database system. To some extent, while the notions of a system being

CPU-bound or I/O-bound are well established in the field of computer

system performance evaluation, the notion of d=..-bcund, cr

concv .ut.eccy-bound, is yet to be established. It is precisely this
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dimension of performance limitation that the concurrency control algo-

rithms are to address.

To conentrate on evaluating the impact of data contention rather than

contention for other system resources, we propose to conceal the details

* of the computer systems (CPU, number of I/O devices, etc.) by

parameterizing the mean computer service time for each granule request

to be a constant I/u. This implies that the computer system resources

are adequately supplied such that marginal increases in load (i.e., size

of transactions or number of terminals) will not cause significant con-

tention for computer resources to occur, and therefore maintaining the

computer service time per granule at i/u. Equivalently, we postulate a

transaction processing- system in which the entire computer system is

abstracted into a single 'infinite' server with a constant mean service

time per granule access request. We then derive expressions for per-

formance measures for this transaction processing system as functions of

parameters of concern to concurrency control, such as transaction size,

level of multi-programming, size of read sets and write sets, database

size, etc., under each of the concurrency control algorithms to be

studied. In short, this approach helps isolating the effect of data

contention from that of computer system resource contention and is espe-

cially useful in comparative evaluation of different concurrency control

methods.
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As a short digression, this philosophy of separating data contention

from computer system resource contention is not entirely new. Some ear-

" ly work in performance evaluation of concurrency control using simu-

lation (<Spitzer76>, <Mun.z77>, <Ries77>, <Ries79>) did not make this

distinction. However, the set of simulation studies conducted in

(<Lin82a>, <Lin82b>, <Lin82c>) specifically separates the effect of con-

tention for computer systems from that of data contention. In

particular, in <Lin82b>, a simulation of the two phase locking concur-

rency control method is conducted which provides interesting evidences

that the performance of the two phase locking method depends very lttle

on the variance of the granule service time. This gives some support

for the validity of studying data contention as an entity separate from

contention for computer systems. Among the analytical work, <PotierSO>

studied the effects of two phase locking method on performance, employ-

ing a two-level model in which the computer system resource contention

is modeled at one level while the data contention and concurrency con- A .

trol are modeled at the other level, and the global performance is

derived by combining the two. A similar approach was taken -n

<Menasce82> for analytically evaluating the performance of the

timestamping algorithm. Analytical models that concentrate on data con-

tention are reported in <Shumel>, <Chesnais83>, <GraySl> and

<Goodman83>. Our purpose of modelling here, however, is aimed at pro-

viding simcie formula that are intuitively useful in assessing the

impact of the concurrency control methods on performance of a 3egmented

database. Therefore we rely on deriving functional relationships among
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system parameters and performance measures at the steady state to shed

light on the key differences of the concurrency control methods under

Under this approach, we postulate a model of transaction behavior

under two phase locking as shown in Figure 39(a) and a model of that

under multiversion timestamping in Figure 39(b). In general, a trans-

action begins by requesting the first granule. Under two phase locking,

the request may be blocked and the transaction put in the block queue

until it is reactivated. Under multiversion timestamping, however, the

request is always granted. Once the request is granted, the transaction

spends on the average I/u units of time in accessing and processing that

granule. This time includes all CPU and I/O time needed for processing

the granule and waiting time for CPU and I/O devices. The transaction

then proceeds to request the second granule, and repeats this process

until it is finished. When a transaction has finished processing all

its granules, it enters its commit phase whose length is determined by

the number of granules the transaction has to write. Under 2PL, the

transaction then leaves the system as successfully completed. Under

MVTS or HTS, however, a transaction would have to be atomically val'-

dated for successful completion. This means that a transaction could be

aborted and leaves the system as unsuccessfully finished.

We assume that the transact:ons in the same class tehave n a honoge-

neous way, meaning that all transactions in the a class T1 access the
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same number of data granules in each data segment. We denote the number

of granules of data segment Dj accessed (or written) by a transaction in

class T, as a.j (or w1.3 ) The size of a transaction is equivalent to

the total number of granules it accesses. We denote the size of trans-

actions in class T1 as a1 . We also assume that all granules within the

same data segment have the same likelihood of being accessed in an

access request directed to that data segment.

In modeling the bahavior of the 2PL algorithm, we ignore the deadlock

issue to render the model tractable, assuming that its impact on the

overall performance is negligible, and we are mainly concentrating on

the algorithm's blocking bahavior. This assumption is very likely to be

violated in real systems. However, this assumption is in favor of the

2PL approach, and is a conservative assumption when the purpose of the

study is to identify scenarios under which HTS can perform better than

2PL.

Finally, we assume that at steady state, the expected number of

granules already processed by a transaction in the system is a fixed

proportion a of the size of the transaction. (The size of a transaction

is given by the parameter a, for transactions in class T,.) That is, if

one were to pick at random a transaction in class T1 currently in a sys-

tem at its steady state, then the expected number of granules already

accessed by this transaction can be expressed as s a,, where s is a

constant between 0 and 1. This assumption plays an important role in
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0 simplifying the computation of transition probabilities in both the 2PL

system and the HTS system.

Given the above, Figure 40 provides a summary listing of the parame-

ters that we will be working with.

9.1.3.2 DERIVATION OF PERFORMANCE MEASURES

TWO PHASE LOCKING MODEL: We will first compute the rate of conflicts

jin the transaction system under the 2PL algorithm. To do this, one must

* derive the expected number of granules locked and that write-locked at

any time in both D, and D2. Let these numbers be denoted as g1 , 92, gWI

g W2 1 where g, denotes the expected number of granules locked in D, and

gwl denotes the expected number of granules write-locked in DI, and so

on. These numbers can be approximated from the number of transactions

in the system and the parameter s, the expected proportion of the number

of granules processed by a transaction in the system:

i A P1I a, + HP2 *a 2 .~ S

9W gwi (MP I w1 . +P 2  W2,) 0 S

Since we have assumed that data granules within a data segment have the

same likelihood of being accessed in any request, the probability that a

read request from a transaction in class T, for a granule in DI is

- rejected can be given as:

pread(1,.4) = (gw, -w s)/Dj

I - (s / Dj) ( - 1) w l + P 2  W 2 .
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Similarly, the probability that a write request from a transaction in T,

for a granule in D, is rejected is given as:

pwrite(i,i) =(g, - al,1 - s) /1 1

Now, to compute the rate of blocking, one must also find an expression

for the rate of read and the rate of write requests from each trans-

action class to each of the data segment. These rates are functions of

the throughput of the system. Let the expected response times of trans-

actions in classes T, and T2 be denoted as RI and R2. The throughput of

the transactions in class Ti, denoted as throughput1 , according to Lit-

tle's law, is given as

throughputi = MP, / Ri

The rate of read requests from transaction class Tj to data segment D.

is therefore given as

rrate(j,i) = throughputj aj. / a,

Similarly one can derive the rate of write request wrate(j,i). Multiply

the rate of requests by the probability of conflict per request one

derives the rate of conflict, or the rate of blocking, in the system as

follows:

Rate of blocking due to accesses to Di

(s / D,) - (() (pread(:,i) rrate(>,i) pwrite(:,I)

a rwrite(j,i)))

When ID1 J << ID21, which amounts to saying that the potential contention

in . would be much higher than that in D2, we want to concentrate on

the rate of blocking due to accesses to DC,, which is expected to domi-.

nate that due to accesses to D2. Since no transactions in T2 writes in
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3 , we have w2 1 = 0. In addition, in our case, a, = a2, a. 1 = a 2 .1 .

Therefore, We give the rate of blocking in D1 in our case as follows:

C (l/R) {2MPl*(MP1 -i) + (. + e)*MPI*MP 2} (2PL-1)

where e > 1 is the ratio between R, and R2, i.e., e = R, / R 2,

and

C = (s * a,. w1 1 ) / (fDi a,)

What is interesting about this expression for approximating the rate

of blocking due to contention is D is that it is sensitive to the num-

ber of transactions in both classes in the system. Therefore when D, is

heavily contended for and MP2 is much greater than MP1 , we expect the

system to suffer from a high rate of blocking, much of it would be spent

in blocking transactions in class T2, those transactions that need only

to read D, and do not even update Di.

Now we turn to deriving the rate of restarts under the Hierarchical

Timestamp Algorithm.

HIERARCHICAL TIMESTAMP MODEL: The manor performance characteristics

of the HTS algorithm is the rate of abort, I.e., the rate of restarting

transactions due to invalidated accesses. We again assume that in the

case under study D, is much more contended than D2, and therefore the

rate of aborting transactions due to invalidated accesses to granules in

D, dominates that in B2. We are, as a result, interested in deriving the

rate of aborts due to contention in D1 .
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First we derive, for a particular transaction t in class TI, the

expected number of data granules in D, that are timestamped by trans-

actions that are started later than t when t enters its atomic vali-

dation phase. This number, denoted as d1 (i), divided by the total

number of data granules in D1, is the probability that a write request

from t to a data granule in D, would be invalidated during the vali-

dation phase. Therefore, the probability that a transaction in class Ti

would be invalidated due to requesting to write in D, and as a result

would be aborted, is given as

PI~i) 1 I - (I - (dj(i) / D,j)) w ' "- ,(i'

Since in our case, Di > D2, therefore w2 .1 = C. Therefore, under HTS,

only transactions in class T1 could be aborted due to invalidated write

requests for granules in D1 , while transactions in T2 will never-be

aborted due to contention in DI.

Now we proceed to derive d1 (l), the expected number of data granules

timestamped by times later than I(t) when transaction t in T, enters its

atomic validation phase. To compute this, we first derive the expected

elapse time between the initiation time of t in T, and the time when t

enters its atomic validation phase. This time, however, is simply tne

total granule processing time of the transaction, a1/u, since under the

HTS algorithm no time of a transaction is spent in the block state.

Next we derive the expected number of transactions in class T, that

are started during this period of time. This is given as a,/u (MP,
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-I.) / ((al + w,)/u), since MP / ((ai + w1 )/u) gives the rate of start-

ing transactions in Ti. Finally, we derive d1 (l), the expected number of

granules in D, timestamped by later transactions when t in T, enters its

validation phase. Since, under HTS, no transactions in class T2 would

timestamp data elements in DI, (recall that all transactions in T2 use

protocol H to access DI, which does not require any timestamping), d,

(1) will depend solely on the rate of starting transactions in T, and

the expected stage at which these transactions started after t would be

in when t enters its validation phase. The latter is determined by the

parameter s. We therefore derive an approximation of d1 (l) as follows:

d 1(1) (a1/u) (MP j/((a 1+w1 )/u) * s a 1  (2)

This formula in fact gives an upperbound for d1 (l) since it makes the

assumption that there is no overlap of granules timetamped by the young-

er transactions. Therefore we must keep in mind that the resulting

measures of rate of abort would tend to be overstated.

Plugging (2) into (1), we derive the probability that a transaction

in T, would be aborted due to invalidated write request for granules in

DI:

P(1) = i- {i- ((MP 1  -l)*s*a *a,)/( D * (a -w)} w

The rate of aborting transactions due to contended accesses to D, is

therefore P1(I) multiplied by the rate of starting transactions in class

T1, and can be approximated by the following uppertound:

C (a/(alwl)) 2  u * (MP.,*(MP1 - 1)) (HTS-1)

where C is defined the same way as in (2PL-l).
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Compare (HTS-l) with (2PL-i), one discovers the difference that (HTS-,)

does not depend on the level of multi-programming on throughput of the

transactions in class T2. Therefore, if the rate of blocking due to con-

tention in D1 is the source of performance degradation under 2PL and the

rate of restarting is that under HTS, HTS clearly has the potential of

offering an advantage over 2PL, especially in cases where the throughput

requirement for transactions in class T2 is much higher than that in T1.

CONCLUSION: In sum, we have adopted a very simple analytical model

to capture the essence of the performance of the 2-data segment case

under the two phase locking algorithm and the hierarchical timestamp

algorithm. The model makes assumptions that are in general in favor of

the 2PL approach and discriminates against the -HTS approach. The pur-

pose is to demonstrate the effect of the HTS algorithm in relieving

contention in the higher data segment, presumably the much more heavily

contended data segment in our case. The result shows that, in general,

the rate of blocking under 2PL is proportional to MP, 2 + MPI * MP2. In

contrast, the rate of abort under HTS is proportional only to MPJ 2.

While the absolute values depend on other parameters, one can readily

conclude that HTS is preferred when MP2 >> P'..

9.2 DESIGN OF A BANKING DATABASE
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In this section we apply the hierarchical database decomposition

approach to the design of a banking application. As discussed before,

the hierarchical approach to structuring the database components offer

advantages additional to reducing data contention and synchronization

overhead. It also encourages transaction and database designs that take

advantage of the pipelining operations that may be intrinsic to an

application, and results in designs that are more efficient, better

structured and more resistant to lccalized failures. While the main

purpose of the current case study is to demonstrate the existence of

applications that can be structured hierarchically and therefore are

candidate applications where the hierarchical timestamping algorithm can

be employed to reduce contention and synchronization overhead, this case

is also chosen so as to exemplify the structuring effect of the HDD

approach.

A synopsis of this section is as follows. We will in the first part

provide a description of the current operation of the banking system

under study. The current system, considered one of the most advanced in

what it does and is quite sophisticated and complex, is under review by

tne bank to find ways to Improve on it so as tc better meet the demand

on the system as one of the leading electronic banking systems. The

current system is composed of a number of independent systems that have

been developed separately fcr different bank product offerings, such as

loans, funds transfer, cash management, etc. Due to the fact that the

current system is not intrinsically an integrated system, it is consid-
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' ered disadvantaged for dealing with integrated customer services and new

product offerings and with growth in demand in services.

To provide a basis for integration, a new architectural design of the

system has been proposed. This new design fully exploits the database

system technology in order to separate processing from data, so that the

database could serve as an integrated source of information for all

types of existing and future processing. This conceptual model of the

new system will be briefly described in the secnd part of this section.

Taking the conceptual model as the future system architecture, this

banking system, in its integrated form, i.e., as a database applicaiton,

appea.s to exhibit a hierarchical structure where the HDD approach to

database concurrency control can be applied. This hirearchical struc-

ture can be derived from the types of operations and transactions sup-

ported by the current system. In other words, if we were to pull all -

the data now residing, and perhaps duplicated, in the various systems

and perform an analysis on the access and update behavior of the trans-

actions on these data, one can readily identify a hierarchical strucutre

to the database where segments of a higher level are read, but need not

be updated, by transactions that update segments of a lower level. This

hierarchical structure of the database and its corresponding transaction

types and classes constitute a proposed high-level database design for

the database of the new banking system, and w-l- be described in the

third part of this section. This design has the salient feature of
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achieving the effect of data integration without concerns over increased

data contention and synchronization overhead. The section is concluded

with the advantages of the proposed design in its final part.

9.2.1 CURRENT SYSTEM

This description of the current system is mostly extratcted from

<Document-A> and from site visits and verbal follow-ups. The purpose of

this description is to provide an overview of the the structure of the

current configuration and the types of processing in the current system

and use it as a basis for designig an integrated system in which infor-

mation resources are concentrated in a well-structured database.

The current system is composed of various systems that support ccmmu-

nication, financial processing (FP) and information processing (IP).

Communication is performed by a number of communication networks

internal or external to the bank entity under study. The purpose of

these communication networks is to route messages, requests and activity

information among the financial processing systems, the information

processing systems and the external world. Since our focus of study is

the information resources and processing, we will not be concerned with

the detailed nature of the communication networks.

Financial processing refers to the processing of customers' requests

for services, namely, transactions. It is itself supported ty several
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different systems, each of which supports a particular type of financial

service provided by the bank. Currently, there are six systems in this

group:

(1) The Funds Transfer System

(2) The Loan System

(3) The Trade Service System (mostly for- processing letters of

credit) --

(4) The Cash Letter System

(5) The Cash Management System

(6) The Customer Inquiry and Investigation System

Among these systems, the funds transfer system provides a basic ser-

vice that most other systems would use, i.e., transaction processing in

* other systems may result in funds transfer requests being sent to the

* Funds Transfer System.

All the FP systems also produce posting requests to be handed over to

information processing (IP) at the end of an accounting cycle which will

use these posting information to compile account status. At the

* begi4ning of an accounting cycle, the FP systems also receive updated

*account data from :P to be used as the basis for transaction processing

during ttat accounting cycle. The logical relationship among these

financial processing systems and IF is shown in Figure 41.
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The various financial processing systems are currently implemented as

separate entities. That is, every system is a 'sealed' system, communi-

cating with the world external to the system mainly via its own termi-

nals. Data files used by a system are tightly coupled with the

processing component of that system. There exists no physical shared

data files across systems. The current physical relationship among

these financial processing systems and IP is shown in Figure 42.

The physical configuration of the current system uses the Service

Managment Center (SMC) approach to remedy the problems arising from a

lack of direct communication among the systems. In an SMC, terminals

that are connected to various systems are pulled together in one site to

form- an uniform interface to the customer requests. Customer inquiries

and requests come to this site through phone lines or other communi-

cation networks and are interpreted and processed by an operator who

would in turn route the request to the appropriate terminal. Use of the

service management centers is a first step towards the realization of an

integrated customer service.

Information processing (IP) refers to processing of custmer and bank

account information for accounting and MIS purposes. It consists of

journal, customer ledger and bank ledger processing, proofing - a proc-

ess that checks for consistency among journal entries and ledgers and if

necessary generates repair pcs:ings fcr ccrrections, MIS processing,

such as account profitability data compilation, and risk control infor-

"..'..
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mation processing, which computes the bank's risk exposure to various

level of aggregated customer entites. IP accepts posting and trans-

action information from the financial processing systems. The customer

account status information obtained in IP is then fed back to the finan-

cial processing systems. The IP activities are diagrammically shown in

Figure 43.

Currently, :P is basically a batch processing system which accepts

postings from and feeds account status information to various other sys-

tems via tape handoffs or hardcopies. IP is implemented on computer

systems physically separate from financial processing systems, and can

also be considered as a 'sealed' system.

9.2.2 MOTIVATION FOR AN INTEGRATED SYSTEM-

The configuration of the current system is a result of both technical

considerations (e.g., see <Matteis79>, <Reef79>) and organizational con-

siderations. Segmenting systems by product line makes it easier for

individual organization units to plan, develop and control the system

that concerns the product line for which the organizational unt is 

responsible. However, changing needs have made it essential that seg-

mented systems be strategically integrated. The SMC facility currently

employed by the bank is a way to emulate an integration of systems that

a e currently separate.
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in <Madnick83>, several scenarios for the need to integrate histor-

ically segregated systems were discussed. Extending discussions pre-

sented in that paper and the situations faced by the bank in our case

study, we summarize the motivation behind integration as follows:

(I) Separate systems make it difficult to provide a consistent

interface to a customer who purchases vario.us financial products

provided by the hank. For example, the status of a customer

across all financial products is not readily available, since it

has to he separately pulled out from various systems. An

inquiry into a customer transaction that spans product lines can

not he serviced efficiently.

(2) Dispersed information makes it awkward to introduce new,

multi-service products quickly. For example, the cash manage-

ment service now provided by the hank which enables the custom-

ers to query their account status directly from their terminals

cannot access the current account balances in the funds transfer

system. Therefore the account balances made available to the

customers are information compiled from the previous accounting

cycle. Further making available informatin now residing in oth-

er financial processing and information processing systems to

customers at their terminals would also prove to be

time-consuming.

(3) In general, various manual intervention now required to period-

ically obtain information from one system for processing I-n
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another is both costly and may prove to be a limiting factor for

potential future growth.

(4) There are potential problems associated with squeezing the cur-

rent volume of information processing work in a batch processing

window, a window whose size depends on how long the financial

systems have to be kept on-line. In the current system, there

are only occasional misses since the batch window is still rela-

tively large. However, one must begin to plan for the shrinking

of this window as user demands it and an increase in system load

(e.g., volume of transactions). Efforts that move information

processing such as ledger updating on-line so that it can be

performed concurrent with financial transactions will dras-

tically reduce the amount of work that must be squeezed in the

batch window. This amounts to the need for IP to directly

access transaction information and posting requests generated by

TP on a real-time basis.

(5) For the purpose of risk control, events that are taking place in

another system within the current accounting cycle may also be

important. However, this information is not available for decz-

sion making when daily accounting processing is the only way for

a system to become aware of events captured by another system.

In sum, an integrated system offers important strategic advantages

over the currently segregated configuration. As a result, an architec-

tural design of an integrated system has been proposed <Document-C>. In
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essence, the proposal suggests that the new system be designed such that

* information rescurces are separated from processing, i.e., transaction

* and information processing of all types is to be implemented on top of a

shared information resources of the tank entity. Figure Figure 44 cap-

tures the spirit of this proposed architecture.

9.2.3 DESIGNING THE STRUCTURE CF THE INTEGRATED INFORMATION RESOURCE

The above paragraphs provide a background against which a study of

the structure of the integrated information resources in our case is

" attempted. The goal of this study is two-fold. First, a structure of

the information resource, combined with the HDD approach~ to database

concurrency control, can-help integrating data now dispersed in separate

* systems without increasing data contention. Secondly, this structure

may be used as an architecture for guiding future detailed database

design activity.

The study is guided by the simple idea that database design is i4nevi-

tatly interlocked wi4th transaction design, i.e., DE design depends on

* how data is accessed, used and updated by transactions. :n serving

real-time transaction processing, every effort should be made to make

transactions as shcrt as possible so that resources can be freed up

quickly and response times optimi~zed. Thr'is amounts to deferring as much

as ccssi: e proce ssing tnat is not absolutely necessarily real-time.

Xu f a latablase :zften c.ontains derived informnation of one level or
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another. Not requiring real-time transaction processing to be also

responsible for updating all levels of derived data not only reduces the

size of the transactions, but also has the potential of drastically

reducing synchronization overhead if synchronization methods that take

advantage of this feature is employed.

As a contrasting example, suppose the database application system is

designed in such a way that every event made known to the system would

cause all elements in the database that might be affected by the event

to be updated. This means that, for example, when a funds transfer

transaction is processed in a banking system, in addition to updating

the account balances of the two parties involved in the transfer, cus-

tomer ledger, bank ledger, bank journal, total bank assets, account

balances aggregated by various units, etc., must also be updated before

the transaction commits. This extremity inevitably results in the

transaction running for a long time, tying up critical data resources

and causing many other transactions to wait or to be aborted. Obviously

in reality an organization can afford and often do resort to a great

deal of deferred processing so as to limit the scope of one transaction

and produce more efficient processing.

The study begins with an examination of the major transaction and

processing types in the current system. Combining the current behavior

of the transactions and a document concerning general service require-

ments and functional primitives <Document-F>, we identify, for each type
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of transaction or processing, the data elemnts or files in the inte-

grated information resources that would :e accessed or updated. The

access patterns of these transactions are then analyzed for identifica-

tion of a hierarchical segmentation structure that will help in reducing

synchronization overhead.

The left two columns in Figure 45 is a list of the transaction and

processing types identified for the current system along with their data

requirements. Two major observations are made which lead to the con-

struction of a hierarchical segmentation of the database to be presented

in a later paragraph:

(1) There are three types of 'risk control information' that are to

be shared by various types of transaction processing:

a. Aggregate account balances by region, country, conglomerate

and industry.

b. Customer risk control parameters such as overdraft limit and

credit rating.

C. Customer demand deoosit account balances.

All three types of information are dynamically changing.

However, the aggregate account balances need to be updated, or

refreshed, only periodically, and can tolerate relatively long

delays - even through the capability of the system to produce the

most updated aggregate account balances (e.g., total bank loan

exposure :o 'ran) real-time on demand is extremely desira -'ble.

The customer risk control parameters are subject to update
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on-line by bank personnel based on customer requests and other

information. The customer demand deposit account balances, on

the other hand, are updated very frequently, triggered by the .

high-volume funds transfer transactions. Since all three types

of risk control information are accessed by real-time financial

transactions and subject to on-line update, a hierarchical struc-

ture of the database of concern to these financial processing

which minimizes interference among the different types of trans-

actions demanding these information is desirable. In particular,

the customer demand deposit account balances, which are subject S

to high traffic update from funds transfer processing and high

traffic access from most other types of financial transaction

processing, is designated at a higher level than the data updated

by other FP transaction processing. This design makes DDA cur-

rent balances available to many other financial transaction

processing components on a real-time basis without jeopardizing o•

its concurrent availability to the funds transfer transactions

themselves. A non-cyclic database partition of the portion of

the database accessed by the FP processing components is shown in 0

Figure 45.

(2) information processing of the banking system is triggered by

transaction processing. For reasons outlined in the last sub-

section, it is desirable that I? be performed on-line concurrent

with processing cf F? transactions. However, _4 is also clear

that updating ledgers and journals, etc., does not have to be S
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executed as an integral part of the financial transactions that

have triggered it. In other words, a financial transaction can

be committed to the database before the ledger and journal

updates triggered by it are committled. This amounts to design-

ing processes in IP as database transactions that are separate

from FP but nevertheless need to read the transaction records

produced by the FF transactions. At the end of an accounting

cycle, several other types of I? transactions are also triggered

to produce accounting and MIS statements. These latter proc-

esses amount to database transactions that read from the ledger

and journal data segment to produce other derived information in

the database. A hierarchy of accesses to these information is

therefore exhibited by these processing activities, and the

nature of it in our case results in a non-cyclic database parti-

tion of the portion of the database of concern to the IP

processing, which is shown in Figure 46.

Inl sum, the study results in a hierarchical segmentation of the inte-

grated information resources to be used in the integrated banking

system. The data segment graph (DSG) and the data segment hierarchy

(DSH) of this segmentation are shown iJn Figure 47 and Figure 46 on page

248. Transaction classification corresponding to this segmentation is

summarized in the last column of Figure 45 on page 247.
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9.2.4 ADVANTAGES OF THE PROPOSED HIERARCHICAL SEGMENTATION OF THE DATA-

BASE

We have in this section provided a case study that demonstrates the

existence of hierarchical structure of database applications that can

benefit from the HDD approach to zoncurrency control.. We list the fol-

lowing advantages of the proposed hierarchical segmentation of the bank-

ing database under study:

(1) Automate all manual inter-system communication.

(2) Eliminate duplication of customer information for risk con-

trol and the historical database for inquiry.

(3) Enable the system to operate in an environment where on-line

processing is close to 24-hour per day and the batch window

is correspondingly squeezed.

(4) Enable the system to operate with much more timely informa-

Ition.
(5) Achieve the above through integrating information now resid-

ing in separate systems into a shared data rosources with

virtually no increase in data contention and very little

increase in synchronization overhead.

9.3 FUNCTIONAL DECOMPOSITION IN A MULTI-PROCESSOR DATABASE COMPUTER
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I n this section we apply the HDD approach to concurrency control to

the design of a database computer aimed at large-scale multiprocessing.

The first part of this section introduces the architecture of the data-

base computer INFP .. under study, together with the motivation for the - -

chosen architecture :.n comparison with the approaches taken in other

database and transaction oriented multiprocessor systems. The second

par: describes how the HDD approach is closely related to the design of

the Functional Hierarchy of !NFOLEX.

• . :NFOPLEX DATABASE COMPUTER ARCHITECTURE

:NFOPLEX consists of a Storage Hierarchy providing a very large data

storage system, and a Functional Hierarchy, built on top of the Storage

Hiearchy, responsible for providing database management functions. Pre-

vious work in INFOPLEX has centered around the overall hardware archi-

tecture of :NFOPLEX <Madnick79> and the design and evaluation of Storage

Hierarchy <Lam79>. A preliminary design for the Functional Hierarchy is

reported in <Hsu8O, To82, Hsu82>. As shown in Figure 48, the Storage

Hierarchy is comprised of levels of storage devices with various per-

formance and cost features. The high-performance devices, such as cache

memory and main memory, are placed on the top (i.e., the highest level

of the hierarchy,) while low-performance devices such as mass storage

systems are placed at the bottom. Storage Hierarchy supports Functional

Hierarchy by providing a very large virtual address space with a small

average access time. The actual structure of Storage Hierarchy and move-
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ment of data between levels within the storage system are hidden from

Functional Hierarchy. Requests for data blocks are made to the highest

:evel of the Storage Hierarchy, and data is moved automatically between.

levels of the Storage Hierarchy.

The Functional Hierarchy, on the other hand, is a set of micro-

processors and memory modules that are structured into a number of proc-

essing cluste:s. Each processing cluster is called a 'level' of

Functional Hierarchy, and it essentially implements a 'layer' of the

hierarchically decomposed DBMS functionalities. in this section we will

concentrate on the design considerations of the architecture of the

Functional Hierarchy from the concurrency control perspective.

9.3.2 THE STRUCTURED CLUSTERING APPROACH TO MULTIPROCESSING

The conventional approaches to memory organization taken in the

transaction- and database-oriented multiprocessing systems can be clas-

sified into three categories. The first is the tightly coupling

approach, exemplified by such systems as Synapse System. in this

approach, processors share the same address space and communicate with.

one another through shared memory. However, to alleviate contention on

the linear communication bus as shown in Figure 49, private memory

moudules are attached to processors as cache memory. Processors obtain

data from tneir own cache memory and would need to access the shared

memory only when the data needed is not in the cache.
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T-e tigtly couping approach is simp.e and quite efficient.

'However, it gives rise to the cache consistency problem which is a

synchronization problem more primitive than the database transaction

synchronization problem. The Synapse system uses hardware locks to deal

with this problem, locking up a page and making it unavailable for being

loaded into a processor's cache if the page is currently in the cache of

another processor's. By making the hardware architecture completely

transparent to any software other than the operating system, the data-

base concurrency control problem is not dealt with using any special

technique. The disadvantage of this tightly coupling approach is that

it has to employ two layers of synchronization, one dealing with the

cache consistency issue and one dealing with the logical transaction

consistency issue. This aspect combined with a lack of structure in the

architecture makes it potentially unfit for a very high degree of multi-

processing due to contention among processors for the shared memory

pages and data elements.

The second approach is the segregated system approach as exemplifed

by such systems as Tandem System and Stratus System. In this approach,

as shown in Figure 49, every processor is equipped with its own memory

and :/0 capabi.lity. There is no shared memory among processing

elements. Centralized disoatch is normally the method used for distrib-

Sutin .input lobs among processing elements, and control over shared data

£s also centralized in the processing element that runs the database

management system. This azoroacn does away with tne cache consistency
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problem. However, centralizing database management activities within

one processing element limits the capability of this architecture to

meet the demand typically expected on a very large database computer.

This approach, like the tightly coupling approach, is oriented towards

more general purpose multiprocessing system than a database computer. -

The third approach is the functional specialization approach exempli-

fied by such experimental systems as DBC <Hsiao79>. This approach

emphasizes specialized hardware for certain types of processing within

the database system in order to increase throughput. The drawback of

such approach lies with the need for special hardware, the cost of which

may prove to be an inhibiting factor. However, the basic philosophy

that DBMS performs functions that possess structural properties that can

be taken advantage of is a valuable one.

In sum, the first two approaches, while flexible and more suitable

for running application software, does not provide for an environment

for accommodating a large number (in the order of hundreds) of micro-

processors. This is due to the hardware limitation of supporting a

large number of processors on a linear bus and, more importantly, the

software limitation of data contention. They do not attempt to exploit

in the multi-processor architecture structural and functional modularity

that may be inherent in database application systems. The third . '

approach, on the other hand, tends to tie database logic with processor
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technclogy, and makes it more costly and less Adaptable to changes in

either area.

In contrast, INFOPLEX uses the structured clustering approach to

multiprocessing. In this technique, a large number of general purpose

microprocessors are grouped into clusters called 'levels'. As shown in

Figure 50, processors within a level are tightly coupled using the con-

ventional method of a shared bus (local bus) and shared memory modules.

Intra-level cache consistency problem is avoided by allowing only

read-only pages (e.g., pure code) to be resident in private cache

attached to each processor. Multiple levels are in turn linearly cou-

pled via a global bus, but no shared memory exists between levels. In

other words, each level has its own address space and does not share its

address space with any other level, therefore the inter-level memory

consistency problem is avoided. inter-level communication strictly

takes the form of message passing which is performed through hardware

(i.e, the gateway controller) without resorting to inter-level shared

memory.

I

Each level is also supported by the Storage Hierarchy. The Storage

Hierarchy implements a segmented address space each segment of which is

accessible by and only by a particular level. Therefore, the Storage

Hierarchy performs the function of a common mass storage utility for all

levels without viclating the rule that no inter-level shared memory is

allowed.
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With this architecture, the DBMS functionalities are decomposed into

_ayers of tasks, each layer to be assigned to a level. Tasks within a

layer are defined through the layer's interfaces to adjacent layers, and

cragnes within a layer are relatively wel! contained.

The structured clustering approach offers several advantages. First,

general-purpose microprocessors are adequate as processing elements

within each cluster and therefore specialized hardware is not required.

Second, it provides a framework for supporting a large number of

processors in order to provide for the level of parallelism needed to

implement a very large database. Most importantly, this design specif-

ically does away with the memory inconsistency problem. Third, it is a

structured approach to implementing large database computer, possessing

the potential of resulting in a more modular and more reliable design.

We will now turn to the database transaction concurrency control issue

in this particular architecture.

9.3.3 CONCURRENCY CONTROL IN AN DBM ARCHITECTURE WITH STRUCTURED CLUS-

TE.RING

One aspect of reasearcb in the INFOPLEX Functional Hierarchy is a

methodology for functional decomposition. The goal of functional decom-

position is to distritute functionalities of a database and transaction

processing system among the levels of the Functional Hierarchy so as to

minimize inter-level interferences. Several considerations must be tak-
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en into the specification of a methodology. First, as specified by the

architecture, inter-level communication strictly takes the form of mes-

sage passing and no shared data is allowed between levels. This imposes

a constraint on the acceptable decompositions that modules sharing the

same data files or tables are better clustered together into one level.

Otherwise, these modules would incur a heavy overhead of message passing

to get jobs done. Other considerations for decomposition include fre-

quencies and sizes of inter-module communication. For those modules

that communicate frequently and involve large quantity of data being

passed in between, it is better to cluster them into one level than to

separate them.

Finally, there is the need for inter-level communication due to data-

base concurrency control. Even though the current structured architec-

ture enables a process executed within a particular level to access only

data elements within that level, a transaction is nevertheless an entity

that spans the boundary of processes. Control within a level that

ensures mutual exclusion of processes within that level is not suffi-

cient to guarantee transaction level serialiability. For example, if

P11 and PI2 are two processes executing at Levels I and 2 on behalf of

transaction i, and P21 and P22 are two processes executing at Levels I

and 2 on behalf of transaction 2, and PI! is serialized to be before P21

at Level 1 while P12 is serialized to be after P22 at Level 2, then the

overall sequence cannot produce an equivalent serialized execution cf
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these two transactions, and therefore the transaction level database

consistency is violated.

To provide a formal treatment of this Problem, we will first give a

formal definition of control and data flow in the Functional Hierarchy

and then proceed to relate the HBO approach to concurrency control to

functional decomposition of Functional Hierarchy.

9.3.3.! FORMAL DEFINITION OF CONTROL AND DATA FLOW IN INFOPLEX

OVERVIEW: We define a generalized multi-level database computer

architecture as follows. A multi-level database computer is composed of

n (n > ) levels. The top level interfaces with facilities that commu-

* nicate with the external world such as user terminals and telecommuni-

* cation channels, and the bottom level implements a storage subsystem

which communicates with all other levels in the database computer via a

virtual storage interface.

Each level in the system has an Inter-lvlRqetQee(R)fo

which the level cbtains requests to be processed. inter-level communi-

*cation tlakes the form of inter-level requests (IR's); no shared memory

*is allowed. A level is physically i4mplemented by a collection of

* processors and memory modules linearly linked together. The system is

initialized With empty !RQ's. All processors at a level are 'idlet.

Upon arr_ val of ar . R in the IRQ of that level, an Idle processor will
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examine the nature of the IR and take some appropriate action. Specif-

ically, if the 1R is a 6o-j4vad %equzt, a new process is created to

process this 1R, and the processor is dispatched to run the process. If

the IR is a AetL IR, it is channeled to an existing process that this

IR is addressed to. Therefore, a request may either be directed to an

existing process at a level, or it may cause a new process to be gener-

ated. We assume that the arrival of a request is the only cause for a

new process to be generated. Processing of a request at a level may

cause new requests to be generated, which may then be deposited at the

local IRQ or other IRQ's in the system. Processing of a request may also

be suspended pending arrival of some other requests. Upon termination,

a process destroys itself and releases the processor. Barring system

failures, processing of a request will always terminate.

TRANSACTIONS AND REQUESTS: The system is driven by arrival of u"e.,

.Outt tc.-Onz. Arrival of a transaction is signified by the deposit of a

request from this transaction into the IRQ of the first level. In proc-

essing this request, new request may be generated and deposited at

IRQ's. These new requests are, in general, labelled with the identity

of the transaction, and are called request on beho-6 of that

transaction. Therefore, all the requests processed in the system are

identified With some transaction. There will be no expici

intet-ttaJt ctNon communication in the form of request passing.
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OBJECTS: Each level i maintains a set of distinct objects that are
I

to be shared by different transactions and requests. An object is a

smallest stored Unit of data at a level. It is through this set of

objects that the effect of a recuest at a level can be communicated to

another request (in addition to explicit request passing among those

requests on behalf of the same transaction.) We shall denote the set of

objects at the level i as 0(i). Examples of object sets are virtual

information definition table a' the Virtual Information Level and secu-

rity definition at the Security Level.

Object elements in O(i) can be examined, created, destroyed and

modifed by processes at level i. (For the purpose of studying concur-

rency control, we will not include read-only objects at level i in the

object set 0(i).) Each object has some name(s) associated with it, and

an operation will always name the object to be operated on. We will

also denote the union of all object sets O(i) in the DBM to be 0.

9.3.3.2 FCR.XAL CONDIT:ONS FOR CONSISTENCY

The object is the focal point of database concurrency control. The

premise of the correctness of a concurrency control mechanism is that,

if no concurrent processing of multiple transactions exist, that is, if

a transaction is not started until the previous one is finished, then

the database will be left in a consistent state at the end of prccessing

of a transaction. I
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The notion of direct dependencies among transactions and that of a

transaction dependency graph, developed in Chapter two, are directly

applicable to each level of the multi-level DBM defined here. We

rephrase these notions in our context as follows:

Definition. A transaction dependency graph of a schedule S at level

i of a multi-level DBM is a digraph, denoted as TG"')(S), where the

nodes are the transactions in S and the arcs, representing diPect

dependencies between transactions, exist according to the following

rules:

t2- tl iff for some object element d e O(i),

(I) w1 (d
3 ) and r2 (dl) are in S for some d

J, or

4(2) ri(d J) and w2(dk) are in S for some dJ,dk where d3 is the

predecessor of dk, or

(3) w 1 (d
j), w 2 (dk) and r3(dk) are in S and d

4 is a predecessor

of dk.

Since by our definition of the multi-level DEM, the object sets 0(i)-

and 0(n), for levels i and j where i # J, do not intersect, therefore

one can express the condition for overall serializability in terms of

the acyclicity condition on the union of the transaction dependency

graphs TG'"(S), i = 1, ... , n. This is formally described in the fol-

lowing proposition:

P)apoiAion 1

................-. .-.....
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Consistency of a multi-level DBM is maintained if the global trans-

action dependency graph, defined as Union(TG("(S)) over all i = 1,

n, is acyclic.

To ensure the above condition, each level must first ensure that

TG1(S) is acyclic, and a global mechanism must exist which ensures

that if t4 -> t2 in TG''(S) for some i, then there exists no path t2 ->

-> t1 in another TG(j)(S) for any j * i.

9.3.3.3 APPLYING THE HDD APPROACH TO CONCURRENCY CONTROL IN INFOPLEX

What has been stated is the condition for database transaction con-

sistency to hold in a multi-level database computer as defined above.

The basic notion is not very different from that of a non-duplicated

distributed database.

It can be shown that either the two phase locking algorithm or the

conventional timestamping algorithm, implemented at each level, will

enforce global consistency. This follows directly from the fact that

both algorithms impose a partial order on transaction dependencies and

the multi-level DBM architecture does not alter this imposition. Howev-

er, the multi-level multi-processor DBM environment does make certain

aspects of the overhead involved in these conventional algorithms more

costly. We will elaborate this point and show how the HZD approach of

concurrency control can be exploited to improve this situation.
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(i) Inter-level overhead: If the two-phase locking algorithm is used,

tne mechanisms used to prevent illegal interleaving are blocking and

deadlocks. Blocking takes place when a request being processed at level

± on behalf of transaction t, attempts to access an object in O(i) that

is currently locked in an incompatible mode by another transaction t2.

(Note that the request on behalf of t2 that locked this object may or

may not be in existence any more at this point; however, t2 must still

be active somewhere at this point.) Therefore blocking is an activity

performed strictly within a level and does not require inter-level com-

munication. On the other hand, a deadlock may occur across levels. For

example, a deadlock may occur if t, is blocked by t2 at level i, t2

blocked by t3 at level j, and t3 blocked by t, at level k. Distributed

deadlocks must be detected and resolved using distributed deadlock

detection algorithms (e.g., <Obermarck82>) which require a considerable

amount of inter-level coordination.

The timestamping algoirthm does away with the distributed deadlock

problem. However, if a transaction writes into the object sets of

several levels, all these levels must be involved in performing atomic

validation and commit of the transaction. This means that every object

element that the transaction will write must be visited and, if the

write request is validated, a temporary lock must held on the object

until the transaction finishes writing and timestamping all elements and

commits. If this operation involves more than one levels, it cannot be

expected to be executed as fast as it could be if only one processor is
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involved in performing it in a single critical section. Therefore the

multi-level environmen= degrades the efficiency of the algorithm and

much inter-level communication for the purpose of concurrency control

may still be incurred.

To alleviate this problem, a guideline should be used that encourages

the design of the Functional Hierarchy to cluster objects that are to be

updated in a single transaction into object set(s) of one or only a few

levels. In other words, this 'update cluster' property is one of the

aspects that the functional decomposition methodology should achieve in

order to reduce inter-level communication. Another motivation for

accommodating the update cluster property in functional decomposition is

that such decomposition can also benefit from the Hierarchical

Timestamping Algorithm's capability of reducing intra-level

Inter-orocessor communication overhead. This latter point is elaborated

in the following paragraphs.

(2) Intra-level overhead: As discussed in the beginning of this tne-

sis, setting locks or leaving timestamps require the processor to first

obtain the exclusive rig,,t to enter a critical section. This is

required because lock tables or timestamp tables are themselves shared

system resources. Alternatively, a processor can send a message to a

dedicated process (or processor) which manages the tables, and wait for

responses from the dedicated process. Either metnod requires

inter-processor coordinatlcn within a level of the DBM to ensure that
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the atomicity cf the activity of setting locks or timestamping is

enforced. This form of inter-processor data sharing is one of the fac-

tors that limit the effective number of processors a level of the DBM

can have. (For a discussion of this concept of software lockout in a

genreal multi-processor system, see <Madnick68>.)

Specifically, the timestamping algorithm involves the need to

times ap every data element accessed by a process executing on behalf

of a particular transaction. A processor attempting to obtain the right

to enter a critical section in order to read-timestamp a data element

would be forced to wait if the critical section is at the same time

being occupied by another processor attempting to perform timestamping.

An algorithm that helps reducing this form of inter-processor interfer- -

ence would have the effect of increasing the effective level of

multiprocessing within a level.

Therefore, a functional decomposition methodology and an accompanying

transaction design that encourages the write sets of transactions in the

system to be concentrated in one or a few levels would greatly reduce

the Inter-level synchronization overhead. :n addition, _f the object

sets of all the levels in the system can be given a hierarchical order

such that most of the transacitons in the system would read from object

sets that are of higher hierarcical order than the object sets their

w rite set is resided, then the Hierarchical TimestampIng Alg-rithm can

be prcf4tat1y used to reduce the need :o read tamestamp data access
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I requests for certain set of transactions, and therefore reduce the

* intra-level inter-processor interference.

I An example illustrating the applicaiton of the HDD approach of con-

currency control to the INFOPLEX database computer architecture is shown

in Figure 51. in this example, the access method portion of the DEM is

W decomposed into three levels: the high-level index processing level

(LI), the leaf-level index. processing level (L-2) and the data record

access level (L3). Three classes of transactions are recognized by this

pportion of the system: key-updaters, non-key-updaters and

* index-balancing requets. Ll owns the object set of all high-level index

* pages (D1), L2 the object set of all leaf-level index pages (D2), and L3

j the object set of all data records (D3) A key-updater reads :ron DI and

writes to D2 and D3. A non-key-updater reads from D, and D2 and writes

to D3 - Finally an index-balancing request would operate only in D-.

I With this design, the key-updaters's read accesses to DI would not incur

inter-processor overhead in LI. Similarly, the non-key-updaters' read

accesses to DI and D2 would not incur inter-processor overhead in L! and

L2.

In summary, this section has provided a formal treatment of the :on-

currency control problem in the Functional Hierarchy of the database

computer INFOPLEX. It defines the formal conditions for dataase trans-

acteon level of consistency, and shows how this s hould be taken into

orsideraicn as one of the aspects that produce inter-level interfer-
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ence. it then shows how the Hierarchical Timestamping AlgoritM, by

taking advantages of the neei4 to structure the DBMS functionalities to

reduce inter-level interference, can produce the ef-fect of reducing

-ntra-level inter-crocessor interferences. In general, the HD perspec-

ti4ve of concurrency control iJs expected to introduce the dimension of

data decomposition into the formulation of a functional decomposition

methodology.

......................................



;.C.0 SUMMARY AND FUTURE RESEARCH DIRECTIONS

10.1 SUMMARY

Database management systems are emerging as a crucial element of

today's business operations. To fully exploit inherent parallelism in a

computer system and to improve transaction response time, a DBMS must

support multiple users at the same time, allowing multiple transactions

to run in parallel. However, interleaving of the execution of multiple

transactions may result in violation of database integrity. To prevent

the latter from happening, a concurrency control facility must be

included in a DBMS.

There is a growing concern over the efficiency of the concurrency

control facility and its impact on the performance of a DBMS. Conven-

tional approaches to concurrency control, taking serializability as the

criterion of correctness, require that every read and write access

request from a transaction be contrclled by leaving a 'trace' (e.g., a

lock or a timestamp) in the system. Setting locks or timestamping is an

expensive operaton w ..ch not only incurs operatonal overhead but also

produces some inter-transaction conflicts that could be otherwise

avoided. The purpose of the current research is to seek ways to reduce
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the overhead of synchronizing certain types of read accesses while

achieving the goal of serializability.

To this end, a new approach of concurrency control for database man-

agement systems has been proposed. The technique makes use of a hierar-

chical database decomposition, a procedure which decomposes the entire

database into a hierarchy of data segments based on the access pattern

of the update transactions to be run in the system. A corresponding

classification of the update transactions is derived where each trans-

action class is 'rooted' in one of the data segments. The heart of the

new approach lies with differentiating the data accesses of an update

transaction into three types: those accesses to the transaction's own

root data segment, those to data segments higher than the transaction's

own root data segment, and those to data segments lower than the root.

The algorithm consists of three protocols: Protocol E for accessing

data elements within the root segment; Protocol H for accessing higher --

• "data segments; and Protcol L for accessing lower data segments. When

the data segment hierarchy consists of only one data segment, the

hierarchical timestamp algorithm is reduced to the conventional

multi-version timestamp algorithm.

The potential benefit of this algorithm stems from the usage of Pro-

tocol H (the 'cheap' protocol). When Protocol H is applicable, the

algorlthm enables read accesses to higher data segments to prozeed with-

out ever having to wait or to leave any trace of these accesses, thereby
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reducing the overhead of concurrency control. A protocol (Protocol R)

for handling ad-hoc read-only transactions in this environment is also

devised, which does not require read-only transactions to wait or set

any read timestamp. The proof of correctness of these algorithms in

terms of their preservation of serializability is provided through a set

of properties, lemmas and theorems which center around a new ordering

concept called 'topologically follows.' These results are resported in

Chapter three to Chapter six.

An implementation scheme for the proposed Hierarchical Timestamping

Algorithm is described in Chapter seven. It addresses both the problems

of multi-version database maintenance and timestamp management and

attempts to achieve the goal of maximum parallelism within the concur-

rency control facility. In Chapter eight, the hierarchical database

decomposition problem, i.e., the problem of how to find the optimal

database partition and the data segment hierarchy that maximize the gain

of using Protocol H, is formulated, and its complexity analyzed. The

problem is shown to be NP-hard and a heuristic procedure is also pro-

posed. Finally, in Chapter nine, the HDD approch is applied to three

different application areas in which its effect on relieving database

contention and on structuring databases and transactions so as to reduce

concurrency control overhead is demonstrated.

-
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C.2 FUTURE RESEARCH DIRECTIONS

The thrust of the research is more than proposing a new concurrency

control algoriAthm. it demonstrates the potential benefit of exploiting

the knowledge and the structure of the application systems to implement

more efficient and more tailored concurrency control mechanism. Combin--

ing this realization and other aspects of this research, we propose the

following future research directions.

7. (1) Additional Studies for providing further evidences of the exist-

* ence of hierarchical structural disciplines and applicability of the HDD

approach: While Chapter nine has provided an exploratory study of the

* application of the HDD approach, further studies are needed in forms of

* case studies and performance modelling tools. In addition, specific

database and transaction design guidelines that enable the application

base to be broadened need to be formalized.

(2) Exploration of other algorithms that take advantages of the

* hierarchical structural discipline in a transaction processing system:

* The current algorithm is based on the idea that a concurrency control

* algorithm can assign an array of tiAmestamps, rather than a single

* timestamp, to a transaction. This approach increases the flexibility of

a timestamo-based algorithm. However, research into alternative

*R-C * .NSthestknowled algothms wruchturue of heapiaio sinleties tomplemdent.-
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still produce similar flexibility may prove to be a fruitful one. If

this proves to be attainable, then different algorithms achieving the

*same goal of reducing synchronization overhead but of different perform-

ance features may be made available to system designers. Along the same

vein, theoretical and practical investigations into whether similar

flexibility can be built into lock-based algorithms will also be inter-

esting undertakings.

(3) Exploration of other forms of structural disciplines that may

render efficient concurrency control algorithms: Extending the original

idea presented in the research of SDD-l, transaction analysis can con-

tinue to be used as a tool for discovering other forms of structural

disciplines- inherent in application studies. Moreover, current

reasearch has but taken on the method of syntactic analysis of trans-

actions to devise alternative algorithms. Semantic explorations, on the

other hand, may yield even more powerful algorithms. This approach

would be especially useful in systems where transaction types are very

well formulated and understood, and large volume of transactions of a

limited number of transaction types are repetitively executed.

(4) Multiprocessor database computer-specific studies: in order to

fully utilize existing and emerging processor and memory technologies,

the problem of how to intelligently organize components of a large-scale

multiprocessor database computer so as to exploit the maximum level of

concurrency expected in an application system presents a challenge all
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by itself. The current research has only proposed one approach to deal-

ing with the problem, focusing on the database concurrency control

issue. The general philosophy advocated in this research is that there

must be special structural disciplines, for reasons related or unrelated

to increasing parallelisn, that are to be incorporated into the multi-

processor database computer, and these disciplines present opportunities

for one to design algorithms that are more intelligent than conventional

ones. Of specific interests in this research direction are performance

modeling of impact of concurrency control in a mutliprocessor system,

and exploration of other methods that reduce inter-processor and

inter-cluster communication.
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